REFERENCES
1. Costa, C.; Barbosa, J.; Gonçalves, R.; Castro, H.; Campo, F. D.; Lanceros-Méndez, S. Recycling and environmental issues of lithium-ion batteries: advances, challenges and opportunities. Energy. Storage. Mater. 2021, 37, 433-65.
2. Gu, Z. Y.; Wang, X. T.; Heng, Y. L.; et al. Prospects and perspectives on advanced materials for sodium-ion batteries. Sci. Bull. 2023, 68, 2302-6.
3. Zhao, L.; Zhang, T.; Li, W.; et al. Engineering of sodium-ion batteries: opportunities and challenges. Engineering 2023, 24, 172-83.
4. Kubota, K.; Dahbi, M.; Hosaka, T.; Kumakura, S.; Komaba, S. Towards K-ion and Na-ion batteries as "beyond Li-ion”. Chem. Rec. 2018, 18, 459-79.
5. Zhou, L.; Cui, Y.; Niu, P.; et al. Biomass-derived hard carbon material for high-capacity sodium-ion battery anode through structure regulation. Carbon 2025, 231, 119733.
6. Wang, K.; Wang, C.; Yang, H.; et al. Vertical graphene nanosheetsmodified Al current collectors for high-performance sodium-ion batteries. Nano. Res. 2020, 13, 1948-54.
7. Zhou, H.; Song, Y.; Zhang, B.; et al. Overview of electrochemical competing process of sodium storage and metal plating in hard carbon anode of sodium ion battery. Energy. Storage. Mater. 2024, 71, 103645.
8. Hou, H.; Qiu, X.; Wei, W.; Zhang, Y.; Ji, X. Carbon anode materials for advanced sodium-ion batteries. Adv. Energy. Mater. 2017, 7, 1602898.
9. Pan, H.; Hu, Y.; Chen, L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy. Environ. Sci. 2013, 6, 2338.
10. Lu, Y.; Lu, Y.; Niu, Z.; Chen, J. Graphene-based nanomaterials for sodium-ion batteries. Adv. Energy. Mater. 2018, 8, 1702469.
11. Xu, Z.; Park, J.; Yoon, G.; Kim, H.; Kang, K. Graphitic carbon materials for advanced sodium-ion batteries. Small. Methods. 2019, 3, 1800227.
12. Wen, Y.; He, K.; Zhu, Y.; et al. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 2014, 5, 4033.
13. Kang, Y.; Jung, S. C.; Choi, J. W.; Han, Y. Important role of functional groups for sodium ion intercalation in expanded graphite. Chem. Mater. 2015, 27, 5402-6.
14. Tao, F.; Liu, Y.; Ren, X.; et al. Carbon nanotube-based nanomaterials for high-performance sodium-ion batteries: Recent advances and perspectives. J. Alloys. Compd. 2021, 873, 159742.
15. Balogun, M.; Luo, Y.; Qiu, W.; Liu, P.; Tong, Y. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 2016, 98, 162-78.
16. Wang, Z.; Feng, X.; Bai, Y.; et al. Probing the energy storage mechanism of quasi-metallic Na in hard carbon for sodium-ion batteries. Adv. Energy. Mater. 2021, 11, 2003854.
17. Nita, C.; Zhang, B.; Dentzer, J.; Matei, Ghimbeu., C. Hard carbon derived from coconut shells, walnut shells, and corn silk biomass waste exhibiting high capacity for Na-ion batteries. J. Energy. Chem. 2021, 58, 207-18.
18. Tang, Y.; He, J.; Peng, J.; et al. Electrochemical behavior of the biomass hard carbon derived from waste corncob as a sodium-ion battery anode. Energy. Fuels. 2024, 38, 7389-98.
19. Lim, G. H.; Lee, J.; Choi, J.; Kang, Y. C.; Roh, K. C. Efficient utilization of lignin residue for activated carbon in supercapacitor applications. Mater. Chem. Phys. 2022, 284, 126073.
20. Zhang, W.; Qiu, X.; Wang, C.; et al. Lignin derived carbon materials: current status and future trends. Carbon. Res. 2022, 1, 14.
21. Chen, C.; Sun, K.; Huang, C.; et al. Investigation on the mechanism of structural reconstruction of biochars derived from lignin and cellulose during graphitization under high temperature. Biochar 2023, 5, 229.
22. Yao, M.; Bi, X.; Wang, Z.; Yu, P.; Dufresne, A.; Jiang, C. Recent advances in lignin-based carbon materials and their applications: a review. Int. J. Biol. Macromol. 2022, 223, 980-1014.
23. Zhu, Y.; Yang, T. X.; Qi, B. K.; Li, H.; Zhao, Q. S.; Zhao, B. Acidic and alkaline deep eutectic solvents (DESs) pretreatment of grapevine: component analysis, characterization, lignin structural analysis, and antioxidant properties. Int. J. Biol. Macromol. 2023, 236, 123977.
24. Oh, Y.; Park, S.; Jung, D.; Oh, K. K.; Lee, S. H. Effect of hydrogen bond donor on the choline chloride-based deep eutectic solvent-mediated extraction of lignin from pine wood. Int. J. Biol. Macromol. 2020, 165, 187-97.
25. Ji, Q.; Tan, C. P.; Yagoub, A. E. A.; Chen, L.; Yan, D.; Zhou, C. Effects of acidic deep eutectic solvent pretreatment on sugarcane bagasse for efficient 5-hydroxymethylfurfural production. Energy. Technol. 2021, 9, 2100396.
26. Tian, D.; Guo, Y.; Hu, J.; et al. Acidic deep eutectic solvents pretreatment for selective lignocellulosic biomass fractionation with enhanced cellulose reactivity. Int. J. Biol. Macromol. 2020, 142, 288-97.
27. da, Costa., Lopes., A. M.; João, K. G.; Rubik, D. F.; et al. Pre-treatment of lignocellulosic biomass using ionic liquids: wheat straw fractionation. Bioresour. Technol. 2013, 142, 198-208.
28. Liu, Y.; He, Z.; Shankle, M.; Tewolde, H. Compositional features of cotton plant biomass fractions characterized by attenuated total reflection Fourier transform infrared spectroscopy. Ind. Crops. Prod. 2016, 79, 283-6.
29. Morán-Aguilar, M. G.; Calderón-Santoyo, M.; de, Souza., Oliveira., R. P.; Aguilar-Uscanga, M. G.; Domínguez, J. M. Deconstructing sugarcane bagasse lignocellulose by acid-based deep eutectic solvents to enhance enzymatic digestibility. Carbohydr. Polym. 2022, 298, 120097.
30. Ong, H. C.; Yu, K. L.; Chen, W.; et al. Variation of lignocellulosic biomass structure from torrefaction: a critical review. Renew. Sustain. Energy. Rev. 2021, 152, 111698.
31. Kumar, S.; Sharma, S.; Arumugam, S. M.; Miglani, C.; Elumalai, S. Biphasic separation approach in the DES biomass fractionation facilitates lignin recovery for subsequent valorization to phenolics. ACS. Sustain. Chem. Eng. 2020, 8, 19140-54.
32. Ji, Q.; Yu, X.; Wu, P.; et al. Pretreatment of sugarcane bagasse with deep eutectic solvents affect the structure and morphology of lignin. Ind. Crops. Prod. 2021, 173, 114108.
33. Zhang, M.; Tian, R.; Tang, S.; et al. The structure and properties of lignin isolated from various lignocellulosic biomass by different treatment processes. Int. J. Biol. Macromol. 2023, 243, 125219.
34. Shemet, V.; Pomytkin, A.; Neshpor, V. High-temperature oxidation behaviour of carbon materials in air. Carbon 1993, 31, 1-6.
35. Terzyk, A. P. The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro: Part II. TG, FTIR, and XPS analysis of carbons and the temperature dependence of adsorption kinetics at the neutral pH. Colloid. Surface. A. 2001, 177, 23-45.
36. Han, J.; Jeong, S.; Lee, J. H.; Choi, J. W.; Lee, J.; Roh, K. C. Structural and electrochemical characteristics of activated carbon derived from lignin-rich residue. ACS. Sustain. Chem. Eng. 2019, 7, 2471-82.
37. Zhang, H.; Ming, H.; Zhang, W.; Cao, G.; Yang, Y. Coupled carbonization strategy toward advanced hard carbon for high-energy sodium-ion battery. ACS. Appl. Mater. Interfaces. 2017, 9, 23766-74.
38. Wang, H.; Shi, Z.; Jin, J.; Chong, C.; Wang, C. Properties and sodium insertion behavior of Phenolic Resin-based hard carbon microspheres obtained by a hydrothermal method. J. Electroanal. Chem. 2015, 755, 87-91.
39. Pei, L.; Cao, H.; Yang, L.; et al. Hard carbon derived from waste tea biomass as high-performance anode material for sodium-ion batteries. Ionics 2020, 26, 5535-42.
40. Zhu, X.; Jiang, X.; Liu, X.; Xiao, L.; Cao, Y. A green route to synthesize low-cost and high-performance hard carbon as promising sodium-ion battery anodes from sorghum stalk waste. Green. Energy. Environ. 2017, 2, 310-5.
41. Bai, Y.; Wang, Z.; Wu, C.; et al. Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery. ACS. Appl. Mater. Interfaces. 2015, 7, 5598-604.
42. Gao, T.; Zhou, Y.; Jiang, Y.; Xue, Z.; Ding, Y. Bamboo waste derived hard carbon as high performance anode for sodium-ion batteries. Diam. Relat. Mater. 2024, 150, 111737.
43. Zhong, B.; Liu, C.; Xiong, D.; et al. Biomass-derived hard carbon for sodium-ion batteries: basic research and industrial application. ACS. Nano. 2024, 18, 16468-88.