REFERENCES

1. Li, C.; Baek, J. The promise of hydrogen production from alkaline anion exchange membrane electrolyzers. Nano. Energy. 2021, 87, 106162.

2. Park, Y. S.; Jang, M. J.; Jeong, J.; et al. Hierarchical chestnut-burr like structure of copper cobalt oxide electrocatalyst directly grown on Ni foam for anion exchange membrane water electrolysis. ACS. Sustainable. Chem. Eng. 2020, 8, 2344-9.

3. Campagna, Zignani., S.; Faro, M. L.; Carbone, A.; et al. Performance and stability of a critical raw materials-free anion exchange membrane electrolysis cell. Electrochim. Acta. 2022, 413, 140078.

4. Zhang, L.; Fan, Q.; Li, K.; Zhang, S.; Ma, X. First-row transition metal oxide oxygen evolution electrocatalysts: regulation strategies and mechanistic understandings. Sustain. Energy. Fuels. 2020, 4, 5417-32.

5. Li, T.; Yao, Y.; Ko, B. H.; et al. Carbon-supported high-entropy oxide nanoparticles as stable electrocatalysts for oxygen reduction reactions. Adv. Funct. Mater. 2021, 31, 2010561.

6. Kumar, A.; Singh, A.; Suhane, A. Mechanically alloyed high entropy alloys: existing challenges and opportunities. J. Mater. Res. Technol. 2022, 17, 2431-56.

7. Wang, J.; Zhang, J.; Yu, H.; Chen, L.; Jiang, H.; Li, C. Strain engineering of high-entropy oxides enriches highly active lattice oxygen for electrocatalytic water oxidation. ACS. Mater. Lett. 2024, 6, 1739-45.

8. Yao, R.; Zhou, Y.; Shi, H.; et al. Nanoporous surface high-entropy alloys as highly efficient multisite electrocatalysts for nonacidic hydrogen evolution reaction. Adv. Funct. Mater. 2021, 31, 2009613.

9. Wang, Q.; Xie, J.; Qin, Y.; et al. Recent progress in high-entropy alloy electrocatalysts for hydrogen evolution reaction. Adv. Mater. Inter. 2024, 11, 2301020.

10. Hooch, Antink., W.; Lee, S.; Lee, H. S.; et al. High-valence metal-driven electronic modulation for boosting oxygen evolution reaction in high-entropy spinel oxide. Adv. Funct. Mater. 2024, 34, 2309438.

11. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.

12. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996, 54, 11169.

13. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999, 59, 1758.

14. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B. 1994, 50, 17953.

15. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-8.

16. Zhang, B.; Wang, J.; Liu, J.; et al. Dual-descriptor tailoring: the hydroxyl adsorption energy-dependent hydrogen evolution kinetics of high-valance state doped Ni3N in alkaline media. ACS. Catal. 2019, 9, 9332-8.

17. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901-4.

18. Martín-garcía, L.; Bernal-villamil, I.; Oujja, M.; et al. Unconventional properties of nanometric FeO(111) films on Ru(0001): stoichiometry and surface structure. J. Mater. Chem. C. 2016, 4, 1850-9.

19. Sankaranarayanan, R.; Shailajha, S.; Mubina, M. S. K.; Anilkumar, C. P. Effect of Ni2+ and Fe3+ ion concentrations on structural, optical, magnetic, and impedance response of NiFe2O4 nanoparticles prepared by sol-gel process. J. Supercond. Nov. Magn. 2020, 33, 3631-42.

20. Song, X. Z.; Zhao, Y. H.; Zhang, F.; et al. Coupling plant polyphenol coordination assembly with Co(OH)2 to enhance electrocatalytic performance towards oxygen evolution reaction. Nanomaterials 2022, 12, 3972.

21. Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W.; Gerson, A. R.; Smart, R. S. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717-30.

22. Weidler, N.; Schuch, J.; Knaus, F.; et al. X-ray Photoelectron spectroscopic investigation of plasma-enhanced chemical vapor deposited NiOx , NiOx(OH)y , and CoNiOx(OH)y: influence of the chemical composition on the catalytic activity for the oxygen evolution reaction. J. Phys. Chem. C. 2017, 121, 6455-63.

23. Sivkov, D. V.; Petrova, O. V.; Nekipelov, S. V.; et al. The Identification of Cu-O-C bond in Cu/MWCNTs hybrid nanocomposite by XPS and NEXAFS spectroscopy. Nanomaterials 2021, 11, 2993.

24. Wang, Z.; Zhang, G.; Fan, X.; Jin, J.; Zhang, L.; Du, Y. Corrosion behavior and surface characterization of an equiatomic CoCrFeMoNi high-entropy alloy under various pH conditions. J. Alloys. Compd. 2022, 900, 163432.

25. Gomez-Iriarte, G. A.; Pentón-Madrigal, A.; de, Oliveira., L. A. S.; Sinnecker, J. P. XPS study in BiFeO3 surface modified by argon etching. Materials 2022, 15, 4285.

26. Wang, T.; Jiang, Z.; Chu, K. H.; et al. X-Shaped α-FeOOH with enhanced charge separation for visible-light-driven photocatalytic overall water splitting. ChemSusChem 2018, 11, 1365-73.

27. O’donnell, S.; O’neill, D.; Shiel, K.; et al. Plasma-enhanced atomic layer deposition of nickel and nickel oxide on silicon for photoelectrochemical applications. J. Phys. D:. Appl. Phys. 2023, 56, 415302.

28. Xu, S.; Sheng, R.; Cao, Y.; Yan, J. Reversibly switching water droplets wettability on hierarchical structured Cu2S mesh for efficient oil/water separation. Sci. Rep. 2019, 9, 12486.

29. Liu, J.; Tang, S.; Lu, Y.; et al. Synthesis of Mo2N nanolayer coated MoO2 hollow nanostructures as high-performance anode materials for lithium-ion batteries. Energy. Environ. Sci. 2013, 6, 2691.

30. Cheng, B.; Lou, H.; Sarkar, A.; et al. Lattice distortion and stability of (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide under high pressure. Mater. Today. Adv. 2020, 8, 100102.

31. Diallo, A.; Beye, A.; Doyle, T.; Park, E.; Maaza, M. Green synthesis of Co3O4 nanoparticles via aspalathus linearis : physical properties. Green. Chem. Lett. Rev. 2015, 8, 30-6.

32. Wang, D.; Liu, Z.; Du, S.; et al. Low-temperature synthesis of small-sized high-entropy oxides for water oxidation. J. Mater. Chem. A. 2019, 7, 24211-6.

33. Masikhwa, T. M.; Madito, M. J.; Momodu, D.; Bello, A.; Dangbegnon, J. K.; Manyala, N. High electrochemical performance of hybrid cobalt oxyhydroxide/nickel foam graphene. J. Colloid. Interface. Sci. 2016, 484, 77-85.

34. Lin, Z.; Bu, P.; Xiao, Y.; Gao, Q.; Diao, P. β- and γ-NiFeOOH electrocatalysts for an efficient oxygen evolution reaction: an electrochemical activation energy aspect. J. Mater. Chem. A. 2022, 10, 20847-55.

35. Zhang, J.; Wang, T.; Liu, P.; et al. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.

36. He, L.; Cheng, P.; Cheng, C.; Huang, C.; Hsieh, C.; Lu, S. (NixFeyCo6-x-y)Mo6C cuboids as outstanding bifunctional electrocatalysts for overall water splitting. Appl. Catal. B:Environ. 2021, 290, 120049.

37. Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337-65.

38. Friebel, D.; Louie, M. W.; Bajdich, M.; et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305-13.

39. González-flores, D.; Klingan, K.; Chernev, P.; et al. Nickel-iron catalysts for electrochemical water oxidation - redox synergism investigated by in situ X-ray spectroscopy with millisecond time resolution. Sustain. Energy. Fuels. 2018, 2, 1986-94.

40. Xu, Q.; Zhang, L.; Zhang, J.; et al. Anion exchange membrane water electrolyzer: electrode design, lab-scaled testing system and performance evaluation. EnergyChem 2022, 4, 100087.

41. Ullah, F.; Ayub, K.; Mahmood, T. High performance SACs for HER process using late first-row transition metals anchored on graphyne support: a DFT insight. Int. J. Hydrogen. Energy. 2021, 46, 37814-23.

42. Zhao, X.; Zhang, Z.; Cao, X.; et al. Elucidating the sources of activity and stability of FeP electrocatalyst for hydrogen evolution reactions in acidic and alkaline media. Appl. Catal. B:Environ. 2020, 260, 118156.

43. Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Stamenkovic, V.; Markovic, N. Electrocatalysis of the HER in acid and alkaline media. J. Serb. Chem. Soc. 2013, 78, 2007-15.

44. Raja, D.; Cheng, C. C.; Ting, Y. C.; Lu, S. Y. NiMo-MOF-derived carbon-armored Ni4Mo alloy of an interwoven nanosheet structure as an outstanding pH-universal catalyst for hydrogen evolution reaction at high current densities. ACS. Appl. Mater. Interfaces. 2023, 15, 20130-40.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/