REFERENCES
1. Wang, Y.; Liang, J.; Yu, J.; et al. Multiscale haptic interfaces for metaverse. Device 2024, 2, 100326.
2. Chung, H. U.; Kim, B. H.; Lee, J. Y.; et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 2019, 363.
3. Zhao, C.; Park, J.; Root, S. E.; Bao, Z. Skin-inspired soft bioelectronic materials, devices and systems. Nat. Rev. Bioeng. 2024, 2, 671-90.
4. Zhang, K.; Wu, Y.; Lu, J.; et al. Biocompatible salt-enhanced thin porous humidity sensor for human interaction sensing. Sens. Actuat. B. Chem. 2025, 425, 136907.
5. Rehman, H. M. M. U.; Prasanna, A. P. S.; Rehman, M. M.; Khan, M.; Kim, S.; Kim, W. Y. Edible rice paper-based multifunctional humidity sensor powered by triboelectricity. Sustain. Mater. Technol. 2023, 36, e00596.
6. Liu, Y.; Park, W.; Yiu, C. K.; et al. Miniaturized, portable gustation interfaces for VR/AR/MR. Proc. Natl. Acad. Sci. USA. 2024, 121, e2412116121.
7. Zhu, Q. B.; Li, B.; Yang, D. D.; et al. A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat. Commun. 2021, 12, 1798.
8. Niu, H.; Li, H.; Gao, S.; et al. Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv. Mater. 2022, 34, e2202622.
9. Deng, Y.; Zhao, M.; Ma, Y.; et al. A flexible and biomimetic olfactory synapse with gasotransmitter-mediated plasticity. Adv. Funct. Mater. 2023, 33, 2214139.
10. Yang, Q.; Jin, W.; Zhang, Q.; et al. Mixed-modality speech recognition and interaction using a wearable artificial throat. Nat. Mach. Intell. 2023, 5, 169-80.
11. Wang, Z.; Xia, X.; Zhu, M.; et al. Rational assembly of liquid metal/elastomer lattice conductors for high-performance and strain-invariant stretchable electronics. Adv. Funct. Mater. 2022, 32, 2108336.
12. Rehman, M. M.; Samad, Y. A.; Gul, J. Z.; et al. 2D materials-memristive devices nexus: from status quo to Impending applications. Prog. Mater. Sci. 2025, 152, 101471.
13. Lin, J.; Peng, Z.; Liu, Y.; et al. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714.
14. Xiao, J.; Zhan, B.; He, M.; et al. Mechanically robust and thermal insulating nanofiber elastomer for hydrophobic, corrosion-resistant, and flexible multifunctional electromagnetic wave absorbers. Adv. Funct. Mater. 2025, 35, 2419266.
15. Kim, S.; Kang, J.; Lee, I.; et al. An intrinsically stretchable multi-biochemical sensor for sweat analysis using photo-patternable ecoflex. NPJ. Flex. Electron. 2023, 7, 268.
16. Choi, S.; Han, S. I.; Jung, D.; et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 2018, 13, 1048-56.
17. Zhong, D.; Wu, C.; Jiang, Y.; et al. High-speed and large-scale intrinsically stretchable integrated circuits. Nature 2024, 627, 313-20.
18. Fan, Z.; Sang, M.; Gong, X.; Leung, K. C.; Xuan, S. From natural leather to intelligent wearable nanocomposite: design and application. Soft. Sci. 2024, 4, 11.
19. Zhu, J.; Liu, Y.; Xie, R.; et al. A breathable, designable and flexible leather-heater used in wearable thermotherapy. Sci. China. Technol. Sci. 2024, 67, 2125-32.
20. Lyu, B.; Ouyang, Y.; Gao, D.; Wan, X.; Bao, X. Multilevel and flexible physical unclonable functions for high-end leather products or packaging. Small 2025, 21, e2408574.
21. Basak, S.; Shakyawar, D. B.; Samanta, K. K.; et al. Cellulose-protein blended sustainable biodegradable flexible composite: a step towards a leather alternative. Cellulose 2023, 30, 11087-112.
22. Xie, R.; Hou, S.; Chen, Y.; et al. Leather-based strain sensor with hierarchical structure for motion monitoring. Adv. Mater. Technol. 2019, 4, 1900442.
23. Zhang, P.; Zhang, X.; Teng, M.; et al. Leather-based shoe soles for real-time gait recognition and automatic remote assistance using machine learning. ACS. Appl. Mater. Interfaces. 2024, 16, 62803-16.
24. Fan, Z.; Lu, L.; Sang, M.; et al. Wearable safeguarding leather composite with excellent sensing, thermal management, and electromagnetic interference shielding. Adv. Sci. 2023, 10, e2302412.
25. Li, J.; Cui, M.; Wen, J.; et al. Leather-like hierarchical porous composites with outstanding electromagnetic interference shielding effectiveness and durability. Compos. B. Eng. 2021, 225, 109272.
26. Wang, P.; Feng, J.; Bai, Y.; et al. Zirconium ion ligand cross-linked carbon nanotubes and leather collagen fibers for flexible, stable, and highly efficient underwater sensors. Chem. Eng. J. 2024, 480, 148201.
27. Zong, Y.; Tan, S.; Ma, J. Flame-retardant PEDOT:PSS/LDHs/leather flexible strain sensor for human motion detection. Macromol. Rapid. Commun. 2022, 43, e2100873.
28. Xie, R.; Du, Q.; Zou, B.; et al. Wearable leather-based electronics for respiration monitoring. ACS. Appl. Bio. Mater. 2019, 2, 1427-31.
29. Zhou, T.; Hu, S.; Ji, W.; et al. An integrated leather-based fluid transport wearable sweat device for electrolyte balance monitoring. J. Mater. Chem. C. 2024, 12, 9363-71.
30. Fan, J.; Yuan, M.; Wang, L.; Xia, Q.; Zheng, H.; Zhou, A. MXene supported by cotton fabric as electrode layer of triboelectric nanogenerators for flexible sensors. Nano. Energy. 2023, 105, 107973.
31. Lyu, B.; Li, H.; Gao, D.; Li, N.; Zheng, C. High output performance leather-based triboelectric nanogenerator by tuning charge trapping and transport. Nano. Energy. 2024, 132, 110342.
32. Kim, D. H.; Kim, Y. S.; Wu, J.; et al. Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper. Adv. Mater. 2009, 21, 3703-7.
33. Pandey, R.; Biswas, A. K.; Chakraborty, U. Non-conventional leather substrate based high isolation wideband MIMO antenna for body-centric applications. Int. J. Electron. Commun. 2023, 170, 154871.
34. Zhou, J.; Chen, H.; Zhou, P.; et al. Ti3C2Tx MXene nanosheet-functionalized leathers for versatile wearable electronics. ACS. Appl. Nano. Mater. 2023, 6, 18150-64.
35. Zou, B.; Chen, Y.; Liu, Y.; et al. Repurposed leather with sensing capabilities for multifunctional electronic skin. Adv. Sci. 2019, 6, 1801283.
36. Wilson, N. H.; Ragothaman, M.; Palanisamy, T. Bimetallic copper-iron oxide nanoparticle-coated leathers for lighting applications. ACS. Appl. Nano. Mater. 2021, 4, 4055-69.
37. Xie, R.; Zhu, J.; Wu, H.; et al. 3D-conductive pathway written on leather for highly sensitive and durable electronic whisker. J. Mater. Chem. C. 2020, 8, 9748-54.
38. Wang, Z.; Chen, B.; Sun, S.; Pan, L.; Gao, Y. Maskless formation of conductive carbon layer on leather for highly sensitive flexible strain sensors. Adv. Elect. Mater. 2020, 6, 2000549.
39. Yang, D.; Nam, H. K.; Le, T. D.; et al. Multimodal E-textile enabled by one-step maskless patterning of femtosecond-laser-induced graphene on nonwoven, knit, and woven textiles. ACS. Nano. 2023, 17, 18893-904.
40. Zhang, S.; Xiao, Y.; Chen, H.; et al. Flexible triboelectric tactile sensor based on a robust MXene/leather film for human-machine interaction. ACS. Appl. Mater. Interfaces. 2023, 15, 13802-12.
41. Ma, Z.; Xiang, X.; Shao, L.; Zhang, Y.; Gu, J. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 2022, 61, e202200705.