REFERENCES
1. Nguyen, A. Q. K.; Pham, H. Q.; Huynh, S. T. M.; Huynh, T. T. Milestones of electrocatalyst development for direct alcohol fuel cells. Adv. Sustain. Syst. 2023, 7, 2300205.
2. Gul Sial MA, Ud Din MA, Wang X. Multimetallic nanosheets: synthesis and applications in fuel cells. Chem. Soc. Rev. 2018, 47, 6175-200.
3. Zhao, Y.; Setzler, B. P.; Wang, J.; et al. An efficient direct ammonia fuel cell for affordable carbon-neutral transportation. Joule 2019, 3, 2472-84.
4. Shekhawat, A.; Samanta, R.; Panigrahy, S.; Barman, S. Electrocatalytic oxidation of urea and ethanol on two-dimensional amorphous nickel oxide encapsulated on N-doped carbon nanosheets. ACS. Appl. Energy. Mater. 2023, 6, 3135-46.
5. Chen, T.; Xu, S.; Zhao, T.; et al. Accelerating ethanol complete electrooxidation via introducing ethylene as the precursor for the C-C bond splitting. Angew. Chem. Int. Ed. 2023, 62, e202308057.
6. Luo, S.; Zhang, L.; Liao, Y.; et al. A tensile-strained Pt-Rh single-atom alloy remarkably boosts ethanol oxidation. Adv. Mater. 2021, 33, e2008508.
7. Wang, Y.; Zheng, M.; Li, Y.; et al. p-d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem. Int. Ed. 2022, 61, e202115735.
8. Monyoncho, E. A.; Steinmann, S. N.; Michel, C.; Baranova, E. A.; Woo, T. K.; Sautet, P. Ethanol electro-oxidation on palladium revisited using polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) and density functional theory (DFT): why is it difficult to break the C-C bond? ACS. Catal. 2016, 6, 4894-906.
9. Zhou, X.; Ma, Y.; Ge, Y.; et al. Preparation of Au@Pd core-shell nanorods with fcc-2H-fcc heterophase for highly efficient electrocatalytic alcohol oxidation. J. Am. Chem. Soc. 2022, 144, 547-55.
10. Luo, M.; Guo, S. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2017, 2, 17059.
11. Yang, X.; Liang, Z.; Chen, S.; et al. A phosphorus-doped Ag@Pd catalyst for enhanced C-C bond cleavage during ethanol electrooxidation. Small 2020, 16, e2004727.
12. Huang, W.; Ma, X. Y.; Wang, H.; et al. Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution. Adv. Mater. 2017, 29, 1703057.
13. Wang, L.; Liu, Z.; Zhang, S.; et al. In situ assembly of ultrafine AuPd nanowires as efficient electrocatalysts for ethanol electroxidation. Int. J. Hydrogen. Energy. 2021, 46, 8549-56.
14. Wang, J.; Zhang, G.; Liu, H.; et al. High-performance electrocatalytic reduction of CO2 to CO by ultrathin PdCu alloy nanosheets. Sep. Purif. Technol. 2023, 320, 124186.
15. Liu, D.; Zeng, Q.; Hu, C.; et al. Core-shell CuPd@NiPd nanoparticles: coupling lateral strain with electronic interaction toward high-efficiency electrocatalysis. ACS. Catal. 2022, 12, 9092-100.
16. Wang, H.; Zheng, H.; Ling, L.; et al. Pd metallene aerogels with single-atom W doping for selective ethanol oxidation. ACS. Nano. 2022, 16, 21266-74.
17. Zhang, Y.; Jang, H.; Ge, X.; et al. Single-atom Sn on tensile-strained ZnO nanosheets for highly efficient conversion of CO2 into formate. Adv. Energy. Mater. 2022, 12, 2202695.
18. Feng, C.; Lv, M.; Shao, J.; et al. Lattice strain engineering of Ni2P enables efficient catalytic hydrazine oxidation-assisted hydrogen production. Adv. Mater. 2023, 35, e2305598.
19. Cheng, W.; Zhao, X.; Su, H.; et al. Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy. 2019, 4, 115-22.
20. He, F.; Zheng, Q.; Yang, X.; et al. Spin-state modulation on metal-organic frameworks for electrocatalytic oxygen evolution. Adv. Mater. 2023, 35, e2304022.
21. Xu, L.; Fu, B.; Gao, F.; Ma, J. W.; Gao, H.; Guo, P. Strain engineering of face-centered cubic Pd-Pb nanosheets boosts electrocatalytic ethanol oxidation. ACS. Appl. Energy. Mater. 2023, 6, 2471-8.
22. Zhang, G.; Hui, C.; Yang, Z.; et al. Hydrogen-induced p-d orbital hybridization and tensile strain of PdGa single-atom alloy metallene boosts complete electrooxidation of ethanol. Appl. Catal. B. Environ. 2024, 342, 123377.
23. Han, S.; Ma, Y.; Yun, Q.; et al. The synergy of tensile strain and ligand effect in PtBi nanorings for boosting electrocatalytic alcohol oxidation. Adv. Funct. Mater. 2022, 32, 2208760.
24. You, J.; Zhang, Y.; Fan, G.; et al. Component dependent electrocatalytic activity of magnetic bimetallic Pd-Ni nanoparticles for formate oxidation. Mater. Lett. 2023, 343, 134387.
25. Liang, Y.; Ma, T.; Xiong, Y.; Qiu, L.; Yu, H.; Liang, F. Highly efficient blackberry-like trimetallic PdAuCu nanoparticles with optimized Pd content for ethanol electrooxidation. Nanoscale 2021, 13, 9960-70.
26. Zou, S.; Ji, Y.; Li, J.; et al. Novel leaflike Cu-O-Sn nanosheets as highly efficient catalysts for the Rochow reaction. J. Catal. 2016, 337, 1-13.
27. Hidalgo, M. C.; Murcia, J. J.; Navío, J. A.; Colón, G. Photodeposition of gold on titanium dioxide for photocatalytic phenol oxidation. Appl. Catal. A. General. 2011, 397, 112-20.
28. Maicu, M.; Hidalgo, M. C.; Colón, G.; Navío, J. A. Comparative study of the photodeposition of Pt, Au and Pd on pre-sulphated TiO2 for the photocatalytic decomposition of phenol. J. Photoch. Photobio. A. Chem. 2011, 217, 275-83.
29. Primo, A.; Corma, A.; García, H. Titania supported gold nanoparticles as photocatalyst. Phys. Chem. Chem. Phys. 2011, 13, 886-910.
30. Salomé, S.; Ferraria, A. M.; Botelho do Rego, A. M.; Alcaide, F.; Savadogo, O.; Rego, R. Enhanced activity and durability of novel activated carbon-supported PdSn heat-treated cathode catalyst for polymer electrolyte fuel cells. Electrochim. Acta. 2016, 192, 268-82.
31. Ye, N.; Sheng, W.; Zhang, R.; Yan, B.; Jiang, Z.; Fang, T. Interfacial electron engineering of PdSn-NbN/C for highly efficient cleavage of the C-C bonds in alkaline ethanol electrooxidation. Small 2024, 20, e2304990.
32. Yang, X.; Wang, Y.; Tong, X.; Yang, N. Strain engineering in electrocatalysts: fundamentals, progress, and perspectives. Adv. Energy. Mater. 2022, 12, 2102261.
33. Wang, W.; Kang, Y.; Yang, Y.; Liu, Y.; Chai, D.; Lei, Z. PdSn alloy supported on phenanthroline-functionalized carbon as highly active electrocatalysts for glycerol oxidation. Int. J. Hydrogen. Energy. 2016, 41, 1272-80.
34. Spinacé, E. V.; Linardi, M.; Neto, A. O. Co-catalytic effect of nickel in the electro-oxidation of ethanol on binary Pt-Sn electrocatalysts. Electrochem. Commun. 2005, 7, 365-9.
36. Dietrich, C.; Chen, S.; Uzunidis, G.; Hähsler, M.; Träutlein, Y.; Behrens, S. Bimetallic Pd/Sn-based nanoparticles and their catalytic properties in the semihydrogenation of diphenylacetylene. ChemistryOpen 2021, 10, 296-304.
37. Lanza, R.; Bersani, M.; Conte, L.; et al. Effect of crystalline phase and composition on the catalytic properties of PdSn bimetallic nanoparticles in the PROX reaction. J. Phys. Chem. C. 2014, 118, 25392-402.
38. Wang, K. W.; Kang, W. D.; Wei, Y. C.; et al. Promotion of PdCu/C catalysts for ethanol oxidation in alkaline solution by SnO2 modifier. ChemCatChem 2012, 4, 1154-61.
39. Wu, L.; Yan, H.; Li, X.; Wang, X. Characterization and photocatalytic properties of SnO2-TiO2 nanocomposites prepared through gaseous detonation method. Ceram. Int. 2017, 43, 1517-21.
40. Wei, Z.; Ding, J.; Duan, X.; et al. Enhancing selective electrochemical CO2 reduction by in situ constructing tensile-strained Cu catalysts. ACS. Catal. 2023, 13, 4711-8.
41. Li, T.; Zhang, L.; Zhang, L.; et al. Tailoring the chemisorption manner of Fe d-band center with La2O3 for enhanced oxygen reduction in anion exchange membrane fuel cells. Adv. Funct. Mater. 2024, 34, 2309886.
42. Nørskov, J. K.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl. Acad. Sci. USA. 2011, 108, 937-43.
43. Zhao, C.; Wang, J.; Gao, Y.; et al. D-orbital manipulated Ru nanoclusters for high-efficiency overall water splitting at industrial-level current densities. Adv. Funct. Mater. 2024, 34, 2307917.
44. Zamora, Z. J. A.; Stevens, M. B.; Gunasooriya, G. T. K. K.; et al. Tuning the electronic structure of Ag-Pd alloys to enhance performance for alkaline oxygen reduction. Nat. Commun. 2021, 12, 620.
45. Gao, Q.; Mou, T.; Liu, S.; et al. Monodisperse PdSn/SnOx core/shell nanoparticles with superior electrocatalytic ethanol oxidation performance. J. Mater. Chem. A. 2020, 8, 20931-8.
46. Pu, Y.; Celorrio, V.; Stockmann, J. M.; et al. Surface galvanic formation of Co-OH on Birnessite and its catalytic activity for the oxygen evolution reaction. J. Catal. 2021, 396, 304-14.
47. Ahmed, M. S.; Jeon, S. Highly active graphene-supported NixPd100-x binary alloyed catalysts for electro-oxidation of ethanol in an alkaline media. ACS. Catal. 2014, 4, 1830-7.
48. Guo, R. H.; Liu, C. F.; Wei, T. C.; Hu, C. C. Electrochemical behavior of CO2 reduction on palladium nanoparticles: dependence of adsorbed CO on electrode potential. Electrochem. Commun. 2017, 80, 24-8.
49. Gao, D.; Zhou, H.; Cai, F.; et al. Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano. Res. 2017, 10, 2181-91.
50. Torralba, E.; Blanchard, N.; Cachet-Vivier, C.; Muller-Bouvet, D.; González, J.; Bastide, S. Electrochemical study of carbon dioxide reduction at copper-palladium nanoparticles: influence of the bimetallic composition in the CO poisoning tolerance. Electrochim. Acta. 2020, 354, 136739.
51. Qiu, L.; Tao, Y.; Ma, T.; Liang, F. Synergistic effect of trimetallic PdCuIn nanoparticles in ethanol and formate oxidation reaction for remarkable catalytic performance. Energy. Technol. 2024, 12, 2301618.
52. Zhang, Y.; Liu, X.; Liu, T.; et al. Rhombohedral Pd-Sb nanoplates with Pd-terminated surface: an efficient bifunctional fuel-cell catalyst. Adv. Mater. 2022, 34, e2202333.
53. Demarconnay, L.; Brimaud, S.; Coutanceau, C.; Léger, J. Ethylene glycol electrooxidation in alkaline medium at multi-metallic Pt based catalysts. J. Electroanal. Chem. 2007, 601, 169-80.
54. Han, C.; Lyu, Y.; Wang, S.; et al. Highly utilized active sites on Pt@Cu/C for ethanol electrocatalytic oxidation in alkali metal hydroxide solutions. Adv. Funct. Mater. 2023, 33, 2305436.
55. Liang, Z.; Song, L.; Deng, S.; et al. Direct 12-electron oxidation of ethanol on a ternary Au(core)-PtIr(Shell) electrocatalyst. J. Am. Chem. Soc. 2019, 141, 9629-36.
56. Zhang, J.; Ye, J.; Fan, Q.; et al. Cyclic penta-twinned rhodium nanobranches as superior catalysts for ethanol electro-oxidation. J. Am. Chem. Soc. 2018, 140, 11232-40.
57. Torrero, J.; Montiel, M.; Peña, M. A.; Ocón, P.; Rojas, S. Insights on the electrooxidation of ethanol with Pd-based catalysts in alkaline electrolyte. Int. J. Hydrogen. Energy. 2019, 44, 31995-2002.
58. Farsadrooh, M.; Torrero, J.; Pascual, L.; Peña, M. A.; Retuerto, M.; Rojas, S. Two-dimensional Pd-nanosheets as efficient electrocatalysts for ethanol electrooxidation. Evidences of the C-C scission at low potentials. Appl. Catal. B. Environ. 2018, 237, 866-75.
59. Wu, R.; Wang, L. A density functional theory study on the mechanism of complete ethanol oxidation on Ir(100): surface diffusion-controlled C-C bond cleavage. J. Phys. Chem. C. 2020, 124, 26953-64.