REFERENCES
1. Chen, S.; Dai, F.; Cai, M. Opportunities and challenges of high-energy lithium metal batteries for electric vehicle applications. ACS. Energy. Lett. 2020, 5, 3140-51.
2. Du, S.; Gao, F.; Nie, Z.; Liu, Y.; Sun, B.; Gong, X. Assessing resource depletion of NCM lithium-ion battery production for electric vehicles: an exergy-based perspective. J. Clean. Prod. 2023, 420, 138415.
3. Dai, L.; Li, B.; Li, J.; Xu, Z. Preparation of high-performance manganese-based pseudocapacitor material by using spent lithium-ion battery anode graphite via mechanochemical pretreatment. Carb. Neutral. 2024, 3, 79.
4. Zhang, H.; Song, Z.; Fang, J.; et al. Electrolyte optimization for graphite anodes toward fast charging. J. Phys. Chem. C. 2023, 127, 2755-65.
5. Luo, P.; Zheng, C.; He, J.; et al. Structural engineering in graphite-based metal-ion batteries. Adv. Funct. Mater. 2022, 32, 2107277.
6. Yang, X.; Wen, H.; Lin, Y.; et al. Emerging research needs for characterizing the risks of global lithium pollution under carbon neutrality strategies. Environ. Sci. Technol. 2023, 57, 5103-6.
7. Yang, B.; Tamirat, A. G.; Bin, D.; Yao, Y.; Lu, H.; Xia, Y. Regulating intercalation of layered compounds for electrochemical energy storage and electrocatalysis. Adv. Funct. Mater. 2021, 31, 2104543.
8. Laipan, M.; Xiang, L.; Yu, J.; et al. Layered intercalation compounds: mechanisms, new methodologies, and advanced applications. Prog. Mater. Sci. 2020, 109, 100631.
9. Li, Y.; Yan, H.; Xu, B.; Zhen, L.; Xu, C. Y. Electrochemical intercalation in atomically thin van der waals materials for structural phase transition and device applications. Adv. Mater. 2021, 33, e2000581.
10. Khan, F. M. N. U.; Rasul, M. G.; Sayem, A.; Mandal, N. K. Design and optimization of lithium-ion battery as an efficient energy storage device for electric vehicles: a comprehensive review. J. Energy. Storage. 2023, 71, 108033.
11. Zhang, S.; Zhao, K.; Zhu, T.; Li, J. Electrochemomechanical degradation of high-capacity battery electrode materials. Prog. Mater. Sci. 2017, 89, 479-521.
12. Li, L.; Qin, R.; Zhan, R.; et al. Modification with graphite and sulfurized amorphous carbon for high-performance silicon anodes in lithium-ion batteries. J. Energy. Storage. 2024, 98, 113196.
13. Banerjee, J.; Dutta, K. Materials for electrodes of Li-ion batteries: issues related to stress development. Crit. Rev. Solid. State. Mater. Sci. 2017, 42, 218-38.
14. Ezeigwe, E. R.; Dong, L.; Manjunatha, R.; Tan, M.; Yan, W.; Zhang, J. A review of self-healing electrode and electrolyte materials and their mitigating degradation of Lithium batteries. Nano. Energy. 2021, 84, 105907.
15. Zeng, C.; Liang, J.; Cui, C.; Zhai, T.; Li, H. Dynamic investigation of battery materials via advanced visualization: from particle, electrode to cell level. Adv. Mater. 2022, 34, e2200777.
16. Yang, W.; Xie, H.; Shi, B.; Song, H.; Qiu, W.; Zhang, Q. In-situ experimental measurements of lithium concentration distribution and strain field of graphite electrodes during electrochemical process. J. Power. Sources. 2019, 423, 174-82.
17. Liu, D.; Shadike, Z.; Lin, R.; et al. Review of recent development of in situ/operando characterization techniques for lithium battery research. Adv. Mater. 2019, 31, e1806620.
18. Li, T.; Panda, P. K.; Hsieh, C.; Gandomi, Y. A.; Yang, P. Lithium iron phosphate cathode supported solid lithium batteries with dual composite solid electrolytes enabling high energy density and stable cyclability. J. Energy. Storage. 2024, 81, 110444.
19. Xiong, T.; Zhang, D.; Yeo, J. Y.; et al. Interfacial design towards stable zinc metal-free zinc-ion batteries with high energy density. J. Mater. Chem. A. 2024, 12, 5499-507.
20. Jangid, M. K.; Mukhopadhyay, A. Real-time monitoring of stress development during electrochemical cycling of electrode materials for Li-ion batteries: overview and perspectives. J. Mater. Chem. A. 2019, 7, 23679-726.
21. Xie, H.; Song, H.; Guo, J.; Kang, Y.; Yang, W.; Zhang, Q. In situ measurement of rate-dependent strain/stress evolution and mechanism exploration in graphene electrodes during electrochemical process. Carbon 2019, 144, 342-50.
22. Sauerteig, D.; Ivanov, S.; Reinshagen, H.; Bund, A. Reversible and irreversible dilation of lithium-ion battery electrodes investigated by in-situ dilatometry. J. Power. Sources. 2017, 342, 939-46.
23. de, V. L. S.; Xu, R.; Xu, Z.; et al. Chemomechanics of rechargeable batteries: status, theories, and perspectives. Chem. Rev. 2022, 122, 13043-107.
24. Wang, B.; Le, F. L. W.; Brookfield, A.; McInnes, E. J. L.; Dryfe, R. A. W. Resolution of lithium deposition versus intercalation of graphite anodes in lithium ion batteries: an in situ electron paramagnetic resonance study. Angew. Chem. Int. Ed. 2021, 60, 21860-7.
25. Shi, B.; Kang, Y.; Xie, H.; Song, H.; Zhang, Q. In situ measurement and experimental analysis of lithium mass transport in graphite electrodes. Electrochim. Acta. 2018, 284, 142-8.
26. Jones, E. M. C.; Silberstein, M. N.; White, S. R.; Sottos, N. R. In situ measurements of strains in composite battery electrodes during electrochemical cycling. Exp. Mech. 2014, 54, 971-85.
28. Lăcătuşu, M. E.; Theil, K. L. E.; Johnsen, R. K. M.; et al. A multimodal operando neutron study of the phase evolution in a graphite electrode. Arxiv 2021, 03564.
29. Qiu, S.; Xiao, L.; Sushko, M. L.; et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy. Mater. 2017, 7, 1700403.
30. Park, J. H.; Yoon, H.; Cho, Y.; Yoo, C. Y. Investigation of lithium ion diffusion of graphite anode by the galvanostatic intermittent titration technique. Materials 2021, 14, 4683.
31. Oka, H.; Makimura, Y.; Uyama, T.; Nonaka, T.; Kondo, Y.; Okuda, C. Changes in the stage structure of Li-intercalated graphite electrode at elevated temperatures. J. Power. Sources. 2021, 482, 228926.
32. Dimiev, A. M.; Shukhina, K.; Behabtu, N.; Pasquali, M.; Tour, J. M. Stage transitions in graphite intercalation compounds: role of the graphite structure. J. Phys. Chem. C. 2019, 123, 19246-53.
33. He, Y.; Hu, H.; Song, Y.; Guo, Z.; Liu, C.; Zhang, J. Effects of concentration-dependent elastic modulus on the diffusion of lithium ions and diffusion induced stress in layered battery electrodes. J. Power. Sources. 2014, 248, 517-23.
34. Chiuhuang, C.; Huang, H. S. Critical lithiation for C-rate dependent mechanical stresses in LiFePO4. J. Solid. State. Electrochem. 2015, 19, 2245-53.
35. Zhao, H.; Zhang, W.; Zheng, K.; Xu, W. A novel high-efficient lithium-ion battery serial formation system scheme based on partial power conversion. J. Energy. Storage. 2024, 97, 112350.
36. Yu, W.; Deng, N.; Feng, Y.; et al. Understanding multi-scale ion-transport in solid-state lithium batteries. eScience 2025, 5, 100278.
37. Jiang, M.; Ammigan, K.; Lolov, G.; Pellemoine, F.; Liu, D. A novel method for quantifying irradiation damage in nuclear graphite using Raman spectroscopy. Carbon 2023, 213, 118181.
38. de Araujo L, Sarou-Kanian V, Sicsic D, Deschamps M, Salager E. Operando nuclear magnetic resonance spectroscopy: detection of the onset of metallic lithium deposition on graphite at low temperature and fast charge in a full Li-ion battery. J. Magn. Reson. 2023, 354, 107527.
39. Li, J.; Qin, Y.; Shen, J.; Chen, Y. Evolution of carbon nanostructures during coal graphitization: insights from X-ray diffraction and high-resolution transmission electron microscopy. Energy 2024, 290, 130316.
40. An, J.; Shi, L.; Chen, G.; Li, M.; Liu, H.; Yuan, S.; Chen, S.; Zhang, D. Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries. J. Mater. Chem. A. 2017, 5, 19738-44.
41. Cui, S.; Wang, Y.; Liu, S.; Li, G.; Gao, X. Evolution mechanism of phase transformation of Li-rich cathode materials in cycling. Electrochim. Acta. 2019, 328, 135109.
42. Nonaka, T.; Kawaura, H.; Makimura, Y.; Nishimura, Y. F.; Dohmae, K. In situ X-ray Raman scattering spectroscopy of a graphite electrode for lithium-ion batteries. J. Power. Sources. 2019, 419, 203-7.
43. Schweidler, S.; de, B. L.; Schiele, A.; Hartmann, P.; Brezesinski, T.; Janek, J. Volume changes of graphite anodes revisited: a combined operando X-ray diffraction and in situ pressure analysis study. J. Phys. Chem. C. 2018, 122, 8829-35.
44. Park, J.; Park, S. S.; Won, Y. S. In situ XRD study of the structural changes of graphite anodes mixed with SiOx during lithium insertion and extraction in lithium ion batteries. Electrochim. Acta. 2013, 107, 467-72.
45. Li, D.; Wang, Y.; Lu, B.; Zhang, J. Real-time measurements of electro-mechanical coupled deformation and mechanical properties of commercial graphite electrodes. Carbon 2020, 169, 258-63.
46. Weisenberger, C.; Harrison, D. K.; Zhou, C.; Knoblauch, V. Revealing the effects of microstructural changes of graphite anodes during cycling on their lithium intercalation kinetics utilizing operando XRD. Electrochim. Acta. 2023, 461, 142629.
47. Li, B.; Chao, Y.; Li, M.; et al. A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries. Electrochem. Energy. Rev. 2023, 6, 147.
48. Li, D.; Wang, Y. In-situ measurements of mechanical property and stress evolution of commercial graphite electrode. Mater. Des. 2020, 194, 108887.
49. Xiong, Y.; Liu, Y.; Chen, L.; et al. New insight on graphite anode degradation induced by Li-plating. Energy. Environ. Mater. 2022, 5, 872-6.