REFERENCES

1. Wang, X.; Li, W.; Jin, L.; et al. High-precision micro-displacement sensor based on tunnel magneto-resistance effect. Sci. Rep. 2022, 12, 3021.

2. Babatain, W.; Bhattacharjee, S.; Hussain, A. M.; Hussain, M. M. Acceleration sensors: sensing mechanisms, emerging fabrication strategies, materials, and applications. ACS. Appl. Electron. Mater. 2021, 3, 504-31.

3. Rodgers, M. M.; Pai, V. M.; Conroy, R. S. Recent advances in wearable sensors for health monitoring. IEEE. Sensors. J. 2015, 15, 3119-26.

4. Wen, Q.; Li, P.; Zhang, Z.; Hu, H. Displacement measurement method based on double-arrowhead auxetic tubular structure. Sensors 2023, 23, 9544.

5. Brusa, E.; Carrera, A.; Delprete, C. A review of piezoelectric energy harvesting: materials, design, and readout circuits. Actuators 2023, 12, 457.

6. Herrera-May, A. L.; Soler-Balcazar, J. C.; Vázquez-Leal, H.; Martínez-Castillo, J.; Vigueras-Zuñiga, M. O.; Aguilera-Cortés, L. A. Recent advances of MEMS resonators for lorentz force based magnetic field sensors: design, applications and challenges. Sensors 2016, 16, 1359.

7. Wei, L.; Kuai, X.; Bao, Y.; et al. The recent progress of MEMS/NEMS resonators. Micromachines 2021, 12, 724.

8. Liu, H.; Zhong, J.; Lee, C.; Lee, S. W.; Lin, L. A comprehensive review on piezoelectric energy harvesting technology: materials, mechanisms, and applications. Appl. Phys. Rev. 2018, 5, 041306.

9. Shaw, A. D.; Gatti, G.; Gonçalves, P. J. P.; Tang, B.; Brennan, M. J. Design and test of an adjustable quasi-zero stiffness device and its use to suspend masses on a multi-modal structure. Mech. Syst. Signal. Proc. 2021, 152, 107354.

10. Zhao, T.; Xu, M.; Xiao, X.; Ma, Y.; Li, Z.; Wang, Z. L. Recent progress in blue energy harvesting for powering distributed sensors in ocean. Nano. Energy. 2021, 88, 106199.

11. Cheng, C.; Li, S.; Wang, Y.; Jiang, X. Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping. Nonlinear. Dyn. 2017, 87, 2267-79.

12. Sun, X.; Jing, X.; Cheng, L.; Xu, J. A 3-D quasi-zero-stiffness-based sensor system for absolute motion measurement and application in active vibration control. IEEE/ASME. Trans. Mechatron. 2015, 20, 254-62.

13. Ma, Z.; Zhou, R.; Yang, Q. Recent advances in quasi-zero stiffness vibration isolation systems: an overview and future possibilities. Machines 2022, 10, 813.

14. Zhang, C.; He, J.; Zhou, G.; Wang, K.; Xu, D.; Zhou, J. Compliant quasi-zero-stiffness isolator for low-frequency torsional vibration isolation. Mech. Mach. Theory. 2023, 181, 105213.

15. Huang, X.; Liu, X.; Sun, J.; Zhang, Z.; Hua, H. Effect of the system imperfections on the dynamic response of a high-static-low-dynamic stiffness vibration isolator. Nonlinear. Dyn. 2014, 76, 1157-67.

16. Zhou, J.; Xu, D.; Bishop, S. A torsion quasi-zero stiffness vibration isolator. J. Sound. Vib. 2015, 338, 121-33.

17. Schüthe, T.; Riemschneider, K. R.; Meyer-Eschenbach, A. Signal processing using a circular sensor array to measure the torsional angle of a bolted joint. Sensors 2024, 24, 2719.

18. Homišin, J.; Kaššay, P.; Urbanský, M.; Puškár, M.; Grega, R.; Krajňák, J. Electronic constant twist angle control system suitable for torsional vibration tuning of propulsion systems. J. Mar. Sci. Eng. 2020, 8, 721.

19. Park, Y. H.; Lee, H. B.; Kim, G. W. Crack monitoring in rotating shaft using rotational speed sensor-based torsional stiffness estimation with adaptive extended kalman filters. Sensors 2023, 23, 2437.

20. Zheng, Y.; Zhang, X.; Luo, Y.; Zhang, Y.; Xie, S. Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness. Mech. Syst. Signal. Proc. 2018, 100, 135-51.

21. Abdollahi, A.; Peco, C.; Millán, D.; Arroyo, M.; Arias, I. Computational evaluation of the flexoelectric effect in dielectric solids. J. Appl. Phys. 2014, 116, 093502.

22. Abdollahi, A.; Arias, I. Constructive and destructive interplay between piezoelectricity and flexoelectricity in flexural sensors and actuators. J. Appl. Mech. 2015, 82, 121003.

23. Shen, S.; Hu, S. A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids. 2010, 58, 665-77.

24. Zhou, J.; Wang, X.; Xu, D.; Bishop, S. Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms. J. Sound. Vib. 2015, 346, 53-69.

25. Wang, B.; Gu, Y.; Zhang, S.; Chen, L. Q. Flexoelectricity in solids: progress, challenges, and perspectives. Prog. Mater. Sci. 2019, 106, 100570.

26. Huang, W.; Yan, X.; Kwon, S. R.; Zhang, S.; Yuan, F. G.; Jiang, X. Flexoelectric strain gradient detection using Ba0.64Sr0.36TiO3 for sensing. Appl. Phys. Lett. 2012, 101, 252903.

27. Ma, W.; Cross, L. E. Flexoelectric polarization of barium strontium titanate in the paraelectric state. Appl. Phys. Lett. 2002, 81, 3440-2.

28. Huang, S.; Qi, L.; Huang, W.; Shu, L.; Zhou, S.; Jiang, X. Flexoelectricity in dielectrics: materials, structures and characterizations. J. Adv. Dielect. 2018, 8, 1830002.

29. Meng, Y.; Chen, G.; Huang, M. Piezoelectric materials: properties, advancements, and design strategies for high-temperature applications. Nanomaterials 2022, 12, 1171.

30. Kwon, S. R.; Huang, W. B.; Zhang, S. J.; Yuan, F. G.; Jiang, X. N. Flexoelectric sensing using a multilayered barium strontium titanate structure. Smart. Mater. Struct. 2013, 22, 115017.

31. Ma, W.; Cross, L. E. Large flexoelectric polarization in ceramic lead magnesium niobate. Appl. Phys. Lett. 2001, 79, 4420-2.

32. Ji, H.; Zhang, S.; Liu, K.; et al. Flexoelectric enhanced film for an ultrahigh tunable piezoelectric-like effect. Mater. Horiz. 2022, 9, 2976-83.

33. Zhou, Y.; Liu, J.; Hu, X.; Chu, B.; Chen, S.; Salem, D. Flexoelectric effect in PVDF-based polymers. IEEE. Trans. Dielect. Electr. Insul. 2017, 24, 727-31.

34. Gu, H.; Ji, H.; Zhang, S.; Zhai, C.; Xu, M. Displacement sensing with quasi-zero stiffness structure and flexoelectricity. Smart. Mater. Struct. 2023, 32, 035024.

35. Suresh, S.; Ritchie, R. O. Propagation of short fatigue cracks. Int. Metals. Rev. 1984, 29, 445-75.

36. Zheng, D.; Rosenberger, A.; Ghonem, H. Influence of prestraining on high temperature, low frequency fatigue crack growth in superalloys. Mater. Sci. Eng. A. 1993, 161, 13-21.

37. Chen, Y.; Monteiro, E.; Koutiri, I.; Favier, V. Fatigue-constrained topology optimization using the constrained natural element method. Comput. Methods. Appl. Mech. Eng. 2024, 422, 116821.

38. Slebioda, M.; Giele, R.; Langelaar, M. Topology optimization for infinite fatigue life of cyclic symmetric structures subjected to non-proportional loading. Comput. Struct. 2023, 286, 107113.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/