REFERENCES

1. Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017;117:10403-73.

2. He X, Bresser D, Passerini S, et al. The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nat Rev Mater. 2021;6:1036-52.

3. Zeng X, Li M, Abd El-hady D, et al. Commercialization of lithium battery technologies for electric vehicles. Adv Energy Mater. 2019;9:1900161.

4. Iojoiu C, Paillard E. Solid-state batteries with polymer electrolytes. In: Bard AJ, editor. Encyclopedia of electrochemistry. Wiley; 2007. pp. 1-49.

5. Dorval V, St-Pierre C, Vallee A. Lithium-metal-polymer batteries: from the electrochemical cell to the integrated energy storage system. Available from: https://www.vertiv.com/48e1ad/globalassets/documents/battcon-static-assets/2004/lithium-metal-polymer-batteries--from-the-electrochemical-cell-to-the-integrated-energy-storage-system.pdf [Last accessed on 26 Jul 2024].

6. Shin J. Ionic liquids to the rescue? Electrochem Commun. 2003;5:1016-20.

7. Hoffknecht J, Wettstein A, Atik J, et al. Coordinating anions “to the rescue” of the lithium ion mobility in ternary solid polymer electrolytes plasticized with ionic liquids. Adv Energy Mater. 2023;13:2202789.

8. Shin J, Henderson WA, Passerini S. An elegant fix for polymer electrolytes. Electrochem Solid State Lett. 2005;8:A125.

9. Shin J, Henderson WA, Passerini S. PEO-based polymer electrolytes with ionic liquids and their use in lithium metal-polymer electrolyte batteries. J Electrochem Soc. 2005;152:A978.

10. Tsao C, Wang C, Trevisanello E, et al. Polyethylene glycol dimethyl ether-plasticized poly(vinylidene difluoride)-based polymer electrolytes inhibit dendrite growth and enable stable cycling for lithium-metal batteries. ACS Appl Energy Mater. 2023;6:5662-70.

11. Atik J, Diddens D, Thienenkamp JH, Brunklaus G, Winter M, Paillard E. Cation-assisted lithium-ion transport for high-performance PEO-based ternary solid polymer electrolytes. Angew Chem Int Ed. 2021;60:11919-27.

12. Herbers L, Küpers V, Winter M, Bieker P. An ionic liquid- and PEO-based ternary polymer electrolyte for lithium metal batteries: an advanced processing solvent-free approach for solid electrolyte processing. RSC Adv. 2023;13:17947-58.

13. Rupp B, Schmuck M, Balducci A, Winter M, Kern W. Polymer electrolyte for lithium batteries based on photochemically crosslinked poly(ethylene oxide) and ionic liquid. Eur Polym J. 2008;44:2986-90.

14. Kim G, Appetecchi G, Carewska M, et al. UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic liquids. J Power Sources. 2010;195:6130-7.

15. Balducci A, Jeong S, Kim G, et al. Development of safe, green and high performance ionic liquids-based batteries (ILLIBATT project). J Power Sources. 2011;196:9719-30.

16. Wetjen M, Kim G, Joost M, Appetecchi GB, Winter M, Passerini S. Thermal and electrochemical properties of PEO-LiTFSI-Pyr14TFSI-based composite cathodes, incorporating 4 V-class cathode active materials. J Power Sources. 2014;246:846-57.

17. Wang G, Xiong X, Xie D, et al. A scalable approach for dendrite-free alkali metal anodes via room-temperature facile surface fluorination. ACS Appl Mater Interfaces. 2019;11:4962-8.

18. Li NW, Yin YX, Yang CP, Guo YG. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv Mater. 2016;28:1853-8.

19. Kazyak E, Wood KN, Dasgupta NP. Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer deposition surface treatments. Chem Mater. 2015;27:6457-62.

20. Liu Y, Lin D, Yuen PY, et al. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv Mater. 2017;29:1605531.

21. Wang L, Zhang L, Wang Q, et al. Long lifespan lithium metal anodes enabled by Al2O3 sputter coating. Energy Stor Mater. 2018;10:16-23.

22. Beichel W, Skrotzki J, Klose P, et al. An artificial SEI layer based on an inorganic coordination polymer with self-healing ability for long-lived rechargeable lithium-metal batteries. Batteries Supercaps. 2022;5:e202100347.

23. Park K, Goodenough JB. Dendrite-suppressed lithium plating from a liquid electrolyte via wetting of Li3N. Adv Energy Mater. 2017;7:1700732.

24. Sun S, Myung S, Kim G, et al. Facile ex situ formation of a LiF-polymer composite layer as an artificial SEI layer on Li metal by simple roll-press processing for carbonate electrolyte-based Li metal batteries. J Mater Chem A. 2020;8:17229-37.

25. Liu Y, Hu R, Zhang D, et al. Constructing Li-rich artificial sei layer in alloy-polymer composite electrolyte to achieve high ionic conductivity for all-solid-state lithium metal batteries. Adv Mater. 2021;33:e2004711.

26. Zhao B, Xing C, Shi Y, et al. Construction of high elastic artificial SEI for air-stable and long-life lithium metal anode. J Colloid Interf Sci. 2023;642:193-203.

27. Sun J, Zhang S, Li J, et al. Robust transport: an artificial solid electrolyte interphase design for anode-free lithium-metal batteries. Adv Mater. 2023;35:e2209404.

28. Zhao F, Zhai P, Wei Y, et al. Constructing artificial SEI layer on lithiophilic MXene surface for high-performance lithium metal anodes. Adv Sci. 2022;9:e2103930.

29. Cui X, Chu Y, Wang X, Zhang X, Li Y, Pan Q. Stabilizing lithium metal anodes by a self-healable and Li-regulating interlayer. ACS Appl Mater Interfaces. 2021;13:44983-90.

30. Chazalviel J. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys Rev A. 1990;42:7355-67.

31. Wan J, Liu X, Diemant T, Wan M, Passerini S, Paillard E. Single-ion conducting interlayers for improved lithium metal plating. Energy Stor Mater. 2023;63:103029.

32. Becking J, Gröbmeyer A, Kolek M, et al. Lithium-metal foil surface modification: an effective method to improve the cycling performance of lithium-metal batteries. Adv Mater Inter. 2017;4:1700166.

33. Deng K, Han D, Ren S, Wang S, Xiao M, Meng Y. Single-ion conducting artificial solid electrolyte interphase layers for dendrite-free and highly stable lithium metal anodes. J Mater Chem A. 2019;7:13113-9.

34. Budi A, Basile A, Opletal G, et al. Study of the initial stage of solid electrolyte interphase formation upon chemical reaction of lithium metal and N-methyl-N-propyl-pyrrolidinium-bis(fluorosulfonyl)imide. J Phys Chem C. 2012;116:19789-97.

35. Appetecchi G, Kim G, Montanino M, Alessandrini F, Passerini S. Room temperature lithium polymer batteries based on ionic liquids. J Power Sources. 2011;196:6703-9.

36. Joost M, Kunze M, Jeong S, Schönhoff M, Winter M, Passerini S. Ionic mobility in ternary polymer electrolytes for lithium-ion batteries. Electrochim Acta. 2012;86:330-8.

37. Diddens D, Heuer A. Simulation study of the lithium ion transport mechanism in ternary polymer electrolytes: the critical role of the segmental mobility. J Phys Chem B. 2014;118:1113-25.

38. Wetjen M, Kim G, Joost M, Winter M, Passerini S. Temperature dependence of electrochemical properties of cross-linked poly(ethylene oxide)-lithium bis(trifluoromethanesulfonyl)imide-N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide solid polymer electrolytes for lithium batteries. Electrochim Acta. 2013;87:779-87.

39. Grande L, Paillard E, Kim GT, Monaco S, Passerini S. Ionic liquid electrolytes for Li-air batteries: lithium metal cycling. Int J Mol Sci. 2014;15:8122-37.

40.

41. Grande L, von Zamory J, Koch SL, Kalhoff J, Paillard E, Passerini S. Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes. ACS Appl Mater Interfaces. 2015;7:5950-8.

42. Chen X, Wang X, Fang D. A review on C1s XPS-spectra for some kinds of carbon materials. Fuller Nanotub Car N. 2020;28:1048-58.

43. Dedryvère R, Leroy S, Martinez H, Blanchard F, Lemordant D, Gonbeau D. XPS valence characterization of lithium salts as a tool to study electrode/electrolyte interfaces of Li-ion batteries. J Phys Chem B. 2006;110:12986-92.

44. Wood KN, Teeter G. XPS on Li-battery-related compounds: analysis of inorganic SEI phases and a methodology for charge correction. ACS Appl Energy Mater. 2018;1:4493-504.

45. Xiong S, Xie K, Diao Y, Hong X. Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium-sulfur batteries. J Power Sources. 2014;246:840-5.

46. Otto S, Moryson Y, Krauskopf T, et al. In-depth characterization of lithium-metal surfaces with XPS and ToF-SIMS: toward better understanding of the passivation layer. Chem Mater. 2021;33:859-67.

47. Yu W, Yu Z, Cui Y, Bao Z. Degradation and speciation of Li salts during XPS analysis for battery research. ACS Energy Lett. 2022;7:3270-5.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/