1. Zhang N, Chen X, Yu M, Niu Z, Cheng F, Chen J. Materials chemistry for rechargeable zinc-ion batteries. Chem Soc Rev 2020;49:4203-19.
2. Chao D, Zhou W, Xie F, et al. Roadmap for advanced aqueous batteries: from design of materials to applications. Sci Adv 2020;6:eaba4098.
3. Yao H, Yu H, Zheng Y, et al. Pre-intercalation of ammonium ions in layered δ-MnO2 nanosheets for high-performance aqueous zinc-ion batteries. Angew Chem Int Ed 2023;62:e202315257.
4. Zhao Y, Zhang S, Zhang Y, et al. Vacancy-rich Al-doped MnO2 cathodes break the trade-off between kinetics and stability for high-performance aqueous Zn-ion batteries. Energy Environ Sci 2024;17:1279-90.
5. Zhong C, Liu B, Ding J, et al. Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-manganese dioxide batteries. Nat Energy 2020;5:440-9.
6. Li H, Zhang F, Wei W, et al. Promoting air stability of Li anode via an artificial organic/inorganic hybrid layer for dendrite-free lithium batteries. Adv Energy Mater 2023;13:2301023.
7. Wu F, Maier J, Yu Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem Soc Rev 2020;49:1569-614.
8. Jing F, Liu Y, Shang Y, et al. Dual ions intercalation drives high-performance aqueous Zn-ion storage on birnessite-type manganese oxides cathode. Energy Stor Mater 2022;49:164-71.
9. Yang X, Wang X, Xiang Y, Ma L, Huang W. Asymmetric electrolytes design for aqueous multivalent metal ion batteries. Nanomicro Lett 2023;16:51.
10. Chen S, Zhao D, Chen L, et al. Emerging intercalation cathode materials for multivalent metal-ion batteries: status and challenges. Small Struct 2021;2:2100082.
11. Pan Z, Liu X, Yang J, et al. Aqueous rechargeable multivalent metal-ion batteries: advances and challenges. Adv Energy Mater 2021;11:2100608.
12. Liang Y, Dong H, Aurbach D, Yao Y. Current status and future directions of multivalent metal-ion batteries. Nat Energy 2020;5:646-56.
13. Liu Z, Qin L, Cao X, et al. Ion migration and defect effect of electrode materials in multivalent-ion batteries. Prog Mater Sci 2022;125:100911.
14. Zhang CJ, Anasori B, Seral-Ascaso A, et al. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv Mater 2017;29:1702678.
15. Amiri A, Chen Y, Bee Teng C, Naraghi M. Porous nitrogen-doped MXene-based electrodes for capacitive deionization. Energy Stor Mater 2020;25:731-9.
16. Ling Z, Ren CE, Zhao MQ, et al. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc Natl Acad Sci USA 2014;111:16676-81.
17. An Y, Tian Y, Shen H, Man Q, Xiong S, Feng J. Two-dimensional MXenes for flexible energy storage devices. Energy Environ Sci 2023;16:4191-250.
18. Abid MZ, Rafiq K, Aslam A, Jin R, Hussain E. Scope, evaluation and current perspectives of MXene synthesis strategies for state of the art applications. J Mater Chem A 2024;12:7351-95.
19. Jing H, Yeo H, Lyu B, et al. Modulation of the electronic properties of MXene (Ti3C2Tx) via surface-covalent functionalization with diazonium. ACS Nano 2021;15:1388-96.
20. Tian Y, An Y, Feng J, Qian Y. MXenes and their derivatives for advanced aqueous rechargeable batteries. Mater Today 2022;52:225-49.
21. Liu H, Ma Y, Cao B, Zhu Q, Xu B. Recent progress of MXenes in aqueous zinc-ion batteries. Acta Phys Chim Sin 2023;39:2210027.
22. Liu P, Liu W, Liu K. Rational modulation of emerging MXene materials for zinc-ion storage. Carbon Energy 2022;4:60-76.
23. Javed MS, Mateen A, Ali S, et al. The emergence of 2D MXenes based Zn-ion batteries: recent development and prospects. Small 2022;18:e2201989.
24. Wei C, Tao Y, An Y, et al. Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes. Adv Funct Mater 2020;30:2004613.
25. Zheng S, Zhao W, Chen J, Zhao X, Pan Z, Yang X. 2D materials boost advanced Zn anodes: principles, advances, and challenges. Nanomicro Lett 2023;15:46.
26. Wang C, Pan Z, Chen H, Pu X, Chen Z. MXene-based materials for multivalent metal-ion batteries. Batteries 2023;9:174.
27. Liu H, Zhang X, Zhu Y, et al. Electrostatic self-assembly of 0D-2D SnO2 quantum dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries. Nanomicro Lett 2019;11:65.
28. Xiong D, Shi Y, Yang HY. Rational design of MXene-based films for energy storage: progress, prospects. Mater Today 2021;46:183-211.
29. Bashir T, Zhou S, Yang S, et al. Progress in 3D-MXene electrodes for lithium/sodium/potassium/magnesium/zinc/aluminum-ion batteries. Electrochem Energy Rev 2023;6:5.
30. Liu Z, Zhang Y, Zhang HB, et al. Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding. J Mater Chem C 2020;8:1673-8.
31. Wang Y, Song J, Wong WY. Constructing 2D sandwich-like MOF/MXene heterostructures for durable and fast aqueous zinc-ion batteries. Angew Chem Int Ed 2023;62:e202218343.
32. Wang C, Chen S, Song L. Tuning 2D MXenes by surface controlling and interlayer engineering: methods, properties, and synchrotron radiation characterizations. Adv Funct Mater 2020;30:2000869.
33. Dall'agnese Y, Lukatskaya MR, Cook KM, Taberna P, Gogotsi Y, Simon P. High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochem Commun 2014;48:118-22.
34. Chen C, Wang T, Zhao X, et al. Customizing hydrophilic terminations for V2CTx MXene toward superior hybrid-ion storage in aqueous zinc batteries. Adv Funct Mater 2024;34:2308508.
35. Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 2011;23:4248-53.
36. Pang SY, Wong YT, Yuan S, et al. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J Am Chem Soc 2019;141:9610-6.
37. Ghidiu M, Lukatskaya MR, Zhao MQ, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance. Nature 2014;516:78-81.
38. Wu M, He M, Hu Q, et al. Ti3C2 MXene-based sensors with high selectivity for NH3 detection at room temperature. ACS Sens 2019;4:2763-70.
39. Liu F, Zhou A, Chen J, et al. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties. Appl Surf Sci 2017;416:781-9.
40. Liu D, Wang L, He Y, et al. Enhanced reversible capacity and cyclic performance of lithium-ion batteries using SnO2 interpenetrated MXene V2C architecture as anode materials. Energy Technol 2021;9:2000753.
41. Wang X, Garnero C, Rochard G, et al. A new etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs. water. J Mater Chem A 2017;5:22012-23.
42. Urbankowski P, Anasori B, Makaryan T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 2016;8:11385-91.
43. Natu V, Pai R, Sokol M, Carey M, Kalra V, Barsoum MW. 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem 2020;6:616-30.
44. Yang S, Zhang P, Wang F, et al. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew Chem Int Ed 2018;57:15491-5.
45. Li T, Yao L, Liu Q, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angew Chem Int Ed 2018;57:6115-9.
46. Li M, Lu J, Luo K, et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J Am Chem Soc 2019;141:4730-7.
47. Jawaid A, Hassan A, Neher G, et al. Halogen etch of Ti3AlC2 MAX phase for MXene fabrication. ACS Nano 2021;15:2771-7.
48. Li J, Wang C, Yu Z, Chen Y, Wei L. MXenes for zinc-based electrochemical energy storage devices. Small 2023:e2304543.
49. Geng D, Zhao X, Chen Z, et al. Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv Mater 2017;29:1702678.
50. Zhang F, Zhang Z, Wang H, et al. Plasma-enhanced pulsed-laser deposition of single-crystalline Mo2C ultrathin superconducting films. Phys Rev Mater 2017;1:034002.
51. Xiao X, Yu H, Jin H, et al. Salt-templated synthesis of 2D metallic MoN and other nitrides. ACS Nano 2017;11:2180-6.
52. Wang Q, Yuan H, Zhang M, et al. A highly conductive and supercapacitive MXene/N-CNT electrode material derived from a MXene-co-melamine precursor. ACS Appl Electron Mater 2023;5:2506-17.
53. Xu M, Lei S, Qi J, et al. Opening magnesium storage capability of two-dimensional MXene by intercalation of cationic surfactant. ACS Nano 2018;12:3733-40.
54. Miao Z, Zhang F, Zhao H, et al. Tailoring local electrolyte solvation structure via a mesoporous molecular sieve for dendrite-free zinc batteries. Adv Funct Mater 2022;32:2111635.
55. Kang Y, Zhang F, Li H, et al. Modulating the electrolyte inner solvation structure via low polarity co-solvent for low-temperature aqueous zinc-ion batteries. Energy Environ Mater 2024:e12707.
56. Du M, Zhang F, Zhang X, et al. Calcium ion pinned vanadium oxide cathode for high-capacity and long-life aqueous rechargeable zinc-ion batteries. Sci China Chem 2020;63:1767-76.
57. Miao Z, Du M, Li H, et al. Constructing nano-channeled tin layer on metal zinc for high-performance zinc-ion batteries anode. EcoMat 2021;3:e12125.
58. Wei W, Zhang F, Li H, et al. Modulating the solvation structure and electrode interface through phosphate additive for highly reversible zinc metal anode. Chem Eng J 2024;485:149944.
59. Miao Z, Liu Q, Wei W, et al. Unveiling unique steric effect of threonine additive for highly reversible Zn anode. Nano Energy 2022;97:107145.
60. Wang C, Xie H, Chen S, et al. Atomic cobalt covalently engineered interlayers for superior lithium-ion storage. Adv Mater 2018;30:e1802525.
61. Li M, Li X, Qin G, et al. Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries. ACS Nano 2021;15:1077-85.
62. Liu Y, Jiang Y, Hu Z, et al. In-situ electrochemically activated surface vanadium valence in V2C MXene to achieve high capacity and superior rate performance for Zn-ion batteries. Adv Funct Mater 2021;31:2008033.
63. Li X, Li M, Yang Q, et al. In situ electrochemical synthesis of MXenes without acid/alkali usage in/for an aqueous zinc ion battery. Adv Energy Mater 2020;10:2001791.
64. Guan J, Shao L, Yu L, et al. Two-dimensional Mg0.2V2O5·nH2O nanobelts derived from V4C3 MXenes for highly stable aqueous zinc ion batteries. Chem Eng J 2022;443:136502.
65. Zhu X, Wang W, Cao Z, et al. Zn2+-intercalated V2O5·nH2O derived from V2CTx MXene for hyper-stable zinc-ion storage. J Mater Chem A 2021;9:17994-8005.
66. Zhu X, Cao Z, Li X, et al. Ion-intercalation regulation of MXene-derived hydrated vanadates for high-rate and long-life Zn-Ion batteries. Energy Stor Mater 2022;45:568-77.
67. Sha D, Lu C, He W, et al. Surface selenization strategy for V2CTx MXene toward superior Zn-ion storage. ACS Nano 2022;16:2711-20.
68. Elia GA, Marquardt K, Hoeppner K, et al. An overview and future perspectives of aluminum batteries. Adv Mater 2016;28:7564-79.
69. Wang Y, Gu H, Lu Y, Zhang W, Li Z. The synergistic effect of Lewis acidic etching V4C3(MXene)@CuSe2/CoSe2 as an advanced cathode material for aluminum batteries. J Mater Sci Technol 2024;177:205-13.
70. Zhao S, Dall’agnese Y, Chu X, Zhao X, Gogotsi Y, Gao Y. Electrochemical interaction of Sn-containing MAX phase (Nb2SnC) with Li-ions. ACS Energy Lett 2019;4:2452-7.
71. Zhao MQ, Xie X, Ren CE, et al. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv Mater 2017;29:1702410.
72. Wu Y, Sun Y, Zheng J, Rong J, Li H, Niu L. MXenes: advanced materials in potassium ion batteries. Chem Eng J 2021;404:126565.
73. Li J, Zeng F, El-Demellawi JK, et al. Nb2CTx MXene cathode for high-capacity rechargeable aluminum batteries with prolonged cycle lifetime. ACS Appl Mater Interfaces 2022;14:45254-62.
74. Wang L, Wang J, Ouyang B. Computational investigation of MAX as intercalation host for rechargeable aluminum-ion battery. Adv Energy Mater 2023;13:2302584.
75. VahidMohammadi A, Hadjikhani A, Shahbazmohamadi S, Beidaghi M. Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries. ACS Nano 2017;11:11135-44.
76. Yu X, Wang B, Gong D, Xu Z, Lu B. Graphene nanoribbons on highly porous 3D graphene for high-capacity and ultrastable Al-ion batteries. Adv Mater 2017;29:1604118.
77. Shen F, Sun Z, Zhao L, et al. Triggering the phase transition and capacity enhancement of Nb2O5 for fast-charging lithium-ion storage. J Mater Chem A 2021;9:14534-44.
78. Liu F, Liu Y, Zhao X, Liu X, Fan LZ. Pursuit of a high-capacity and long-life Mg-storage cathode by tailoring sandwich-structured MXene@carbon nanosphere composites. J Mater Chem A 2019;7:16712-9.
79. Zhu J, Shi R, Liu Y, et al. 3D interwoven MXene networks fabricated by the assistance of bacterial celluloses as high-performance cathode material for rechargeable magnesium battery. Appl Surf Sci 2020;528:146985.
80. Zhang Y, Li D, Li J, et al. Flexible TiVCTx MXene film for high-performance magnesium-ion storage device. J Colloid Interface Sci 2024;657:550-8.
81. Zhao X, Zhang F, Li H, et al. Dynamic heterostructure design of MnO2 for high-performance aqueous zinc-ion batteries. Energy Environ Sci 2024;17:3629-40.
82. Song M, Tan H, Chao D, Fan HJ. Recent advances in Zn-ion batteries. Adv Funct Mater 2018;28:1802564.
83. Xie M, Zhang X, Wang R, et al. Mn-O bond engineering mitigating Jahn-Teller effects of manganese oxide for aqueous zinc-ion battery applications. Chem Eng J 2024;494:152908.
84. Zhao Y, Zhang P, Liang J, et al. Uncovering sulfur doping effect in MnO2 nanosheets as an efficient cathode for aqueous zinc ion battery. Energy Stor Mater 2022;47:424-33.
85. Zhu X, Cao Z, Wang W, et al. Superior-performance aqueous zinc-ion batteries based on the in situ growth of MnO2 nanosheets on V2CTX MXene. ACS Nano 2021;15:2971-83.
86. Peng Q, Guo J, Zhang Q, et al. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J Am Chem Soc 2014;136:4113-6.
87. Wang Y, Liu L, Wang Y, Qu J, Chen Y, Song J. Atomically coupled 2D MnO2/MXene superlattices for ultrastable and fast aqueous zinc-ion batteries. ACS Nano 2023;17:21761-70.
88. Shi M, Wang B, Chen C, Lang J, Yan C, Yan X. 3D high-density MXene@MnO2 microflowers for advanced aqueous zinc-ion batteries. J Mater Chem A 2020;8:24635-44.
89. Wu L, Mei Y, Liu Y, et al. Interfacial synthesis of strongly-coupled δ-MnO2/MXene heteronanosheets for stable zinc ion batteries with Zn2+-exclusive storage mechanism. Chem Eng J 2023;459:141662.
90. Shi M, Wang B, Shen Y, et al. 3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries. Chem Eng J 2020;399:125627.
91. Du M, Miao Z, Li H, Sang Y, Liu H, Wang S. Strategies of structural and defect engineering for high-performance rechargeable aqueous zinc-ion batteries. J Mater Chem A 2021;9:19245-81.
92. Zhang F, Sun X, Du M, et al. Weaker interactions in Zn2+ and organic ion-pre-intercalated vanadium oxide toward highly reversible zinc-ion batteries. Energy Environ Mater 2021;4:620-30.
93. Du M, Liu C, Zhang F, et al. Tunable layered (Na,Mn)V8O20·nH2O cathode material for high-performance aqueous zinc ion batteries. Adv Sci 2020;7:2000083.
94. Dong W, Du M, Zhang F, et al. In situ electrochemical transformation reaction of ammonium-anchored heptavanadate cathode for long-life aqueous zinc-ion batteries. ACS Appl Mater Interfaces 2021;13:5034-43.
95. Zhang X, Xue F, Sun X, et al. High-capacity zinc vanadium oxides with long-term cyclability enabled by in-situ electrochemical oxidation as zinc-ion battery cathode. Chem Eng J 2022;445:136714.
96. Du M, Miao Z, Li H, et al. Oxygen-vacancy and phosphate coordination triggered strain engineering of vanadium oxide for high-performance aqueous zinc ion storage. Nano Energy 2021;89:106477.
97. Zhang F, Du M, Miao Z, et al. Oxygen vacancies and N-doping in organic-inorganic pre-intercalated vanadium oxide for high-performance aqueous zinc-ion batteries. InfoMat 2022;4:e12346.
98. Zhang F, Kang Y, Zhao X, et al. Boosting charge carrier transport by layer-stacked MnxV2O6/V2C heterostructures for wide-temperature zinc-ion batteries. Adv Funct Mater 2024:2402071.
99. Liu C, Xu W, Mei C, Li MC, Xu X, Wu Q. Highly stable H2V3O8/Mxene cathode for Zn-ion batteries with superior rate performance and long lifespan. Chem Eng J 2021;405:126737.
100. Liang P, Xu T, Zhu K, et al. Heterogeneous interface-boosted zinc storage of H2V3O8 nanowire/Ti3C2Tx MXene composite toward high-rate and long cycle lifespan aqueous zinc-ion batteries. Energy Stor Mater 2022;50:63-74.
101. Xiao B, Chen J, Hu C, et al. 2D dynamic heterogeneous interface coupling endowing extra Zn2+ storage. Adv Funct Mater 2023;33:2211679.
102. Liu H, Jiang L, Cao B, et al. Van der Waals interaction-driven self-assembly of V2O5 nanoplates and MXene for high-performing zinc-ion batteries by suppressing vanadium dissolution. ACS Nano 2022;16:14539-48.
103. Zheng J, Xu T, Xia G, Cui WG, Yang Y, Yu X. Water-stabilized vanadyl phosphate monohydrate ultrathin nanosheets toward high voltage Al-ion batteries. Small 2023;19:e2207619.
104. Hu P, Zhu T, Wang X, et al. Highly durable Na2V6O16·1.63H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett 2018;18:1758-63.
105. Geng L, Lv G, Xing X, Guo J. Reversible electrochemical intercalation of aluminum in Mo6S8. Chem Mater 2015;27:4926-9.
106. Hu Y, Ye D, Luo B, et al. A binder-free and free-standing cobalt sulfide@carbon nanotube cathode material for aluminum-ion batteries. Adv Mater 2018;30:1703824.
107. Shuai H, Liu R, Li W, et al. Recent advances of transition metal sulfides/selenides cathodes for aqueous zinc-ion batteries. Adv Energy Mater 2023;13:2202992.
108. Xu M, Bai N, Li HX, Hu C, Qi J, Yan XB. Synthesis of MXene-supported layered MoS2 with enhanced electrochemical performance for Mg batteries. Chin Chem Lett 2018;29:1313-6.
109. Mao Y, Bai J, Lin S, et al. Two birds with one stone: V4C3 MXene synergistically promoted VS2 cathode and zinc anode for high-performance aqueous zinc-ion batteries. Small 2024;20:e2306615.
110. Zhang Y, Cao Z, Liu S, et al. Charge-enriched strategy based on MXene-based polypyrrole layers toward dendrite-free zinc metal anodes. Adv Energy Mater 2022;12:2103979.
111. Tian Y, An Y, Yang Y, Xu B. Robust nitrogen/selenium engineered MXene/ZnSe hierarchical multifunctional interfaces for dendrite-free zinc-metal batteries. Energy Stor Mater 2022;49:122-34.
112. Yao L, Ju S, Yu X. Rational surface engineering of MXene@N-doped hollow carbon dual-confined cobalt sulfides/selenides for advanced aluminum batteries. J Mater Chem A 2021;9:16878-88.
113. Ohno S, Zeier WG. Toward practical solid-state lithium-sulfur batteries: challenges and perspectives. ACC Mater Res 2021;2:869-80.
114. Sun R, Hu J, Shi X, et al. Water-soluble cross-linking functional binder for low-cost and high-performance lithium-sulfur batteries. Adv Funct Mater 2021;31:2104858.
115. Xiao Z, Li Z, Meng X, Wang R. MXene-engineered lithium-sulfur batteries. J Mater Chem A 2019;7:22730-43.
116. Kaland H, Håskjold Fagerli F, Hadler-Jacobsen J, et al. Performance study of MXene/carbon nanotube composites for current collector- and binder-free Mg-S batteries. ChemSusChem 2021;14:1864-73.
117. Xu H, Zhu D, Zhu W, et al. Rational design of high concentration electrolytes and MXene-based sulfur host materials toward high-performance magnesium sulfur batteries. Chem Eng J 2022;428:131031.
118. Cheng Z, Xu Y, Zhang X, et al. An interfacial covalent bonding coupled ultrafine CuS-nanocrystals/MXene heterostructure for efficient and durable magnesium storage. J Mater Chem A 2023;11:12176-84.
119. Zhu J, Zhang X, Gao H, et al. VS4 anchored on Ti3C2 MXene as a high-performance cathode material for magnesium ion battery. J Power Sources 2022;518:230731.
120. Xu N, Wu KH, Miao QS, Zhou XM, Sheng LZ. Application of metal selenide anode materials in sodium-ion batteries. J Changsha Univ Sci Technol 2024;21:1-11.
121. Narayanasamy M, Hu L, Kirubasankar B, Liu Z, Angaiah S, Yan C. Nanohybrid engineering of the vertically confined marigold structure of rGO-VSe2 as an advanced cathode material for aqueous zinc-ion battery. J Alloy Compd 2021;882:160704.
122. Lv W, Wu G, Li X, Li J, Li Z. Two-dimensional V2C@Se (MXene) composite cathode material for high-performance rechargeable aluminum batteries. Energy Stor Mater 2022;46:138-46.
123. Li Z, Wang X, Zhang W, Yang S. Two-dimensional Ti3C2@CTAB-Se (MXene) composite cathode material for high-performance rechargeable aluminum batteries. Chem Eng J 2020;398:125679.
124. Yuan Z, Lin Q, Li Y, Han W, Wang L. Effects of multiple ion reactions based on a CoSe2/MXene cathode in aluminum-ion batteries. Adv Mater 2023;35:e2211527.
125. Liu F, Wang T, Liu X, Jiang N, Fan LZ. High-performance heterojunction Ti3C2/CoSe2 with both intercalation and conversion storage mechanisms for magnesium batteries. Chem Eng J 2021;426:130747.
126. Zhang Y, Cao JM, Yuan Z, et al. TiVCTx MXene/chalcogenide heterostructure-based high-performance magnesium-ion battery as flexible integrated units. Small 2022;18:e2202313.
127. Zhang Y, Cao J, Li J, et al. Self-assembled cobalt-doped NiMn-layered double hydroxide (LDH)/V2CTx MXene hybrids for advanced aqueous electrochemical energy storage properties. Chem Eng J 2022;430:132992.
128. Pan H, Li B, Mei D, et al. Controlling solid-liquid conversion reactions for a highly reversible aqueous zinc-iodine battery. ACS Energy Lett 2017;2:2674-80.
129. Li X, Li N, Huang Z, et al. Enhanced redox kinetics and duration of aqueous I2/I- conversion chemistry by MXene confinement. Adv Mater 2021;33:e2006897.
130. Wang X, Liu Y, Wei Z, et al. MXene-boosted imine cathodes with extended conjugated structure for aqueous zinc-ion batteries. Adv Mater 2022;34:e2206812.
131. Tie Z, Liu L, Deng S, Zhao D, Niu Z. Proton insertion chemistry of a zinc-organic battery. Angew Chem Int Ed 2020;59:4920-4.
132. Na M, Oh Y, Byon HR. Effects of Zn2+ and H+ association with naphthalene diimide electrodes for aqueous Zn-ion batteries. Chem Mater 2020;32:6990-7.
133. Nam KW, Park SS, Dos Reis R, et al. Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nat Commun 2019;10:4948.
134. Wang Y, Song J, Wong WY. 3D nanostructured conductive PANI/MXene hydrogels for durable aqueous Zn-ion batteries. J Mater Chem A 2024;12:943-9.
135. Wu G, Lv C, Lv W, Li X, Zhang W, Li Z. Anthraquinone derivatives supported by Ti3C2(MXene) as cathode materials for aluminum-organic batteries. J Energy Chem 2022;74:174-83.
136. Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2017;2:16098.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.