REFERENCES

1. Liu, Z.; Deng, Z.; Davis, S. J.; Giron, C.; Ciais, P. Monitoring global carbon emissions in 2021. Nat. Rev. Earth. Environ. 2022, 3, 217-9.

2. Fan, P.; He, Y.; Pan, J.; et al. Recent advances in photothermal effects for hydrogen evolution. Chinese. Chem. Lett. 2024, 35, 108513.

3. Chu, X.; Sathish, C. I.; Yang, J. H.; et al. Strategies for Improving the photocatalytic hydrogen evolution reaction of carbon nitride-based catalysts. Small 2023, 19, e2302875.

4. Yadav, A. A.; Hunge, Y. M.; Dhodamani, A. G.; Kang, S. W. Hydrothermally synthesized Ag@MoS2 composite for enhanced photocatalytic hydrogen production. Catalysts 2023, 13, 716.

5. Yadav, A.; Hunge, Y.; Kang, S. Porous nanoplate-like tungsten trioxide/reduced graphene oxide catalyst for sonocatalytic degradation and photocatalytic hydrogen production. Surf. Inter. 2021, 24, 101075.

6. Cui, C.; Xie, J.; Lin, D.; et al. Recent progress in carbon-based materials as catalysts for electrochemical and photocatalytic water splitting. In: Paul R, Etacheri V, Wang Y, Lin CT , Editors. Carbon based nanomaterials for advanced thermal and electrochemical energy storage and conversion. Elsevier; 2019.p.173-200.

7. Li, M.; Cai, B.; Tian, R.; et al. Vanadium doped 1T MoS2 nanosheets for highly efficient electrocatalytic hydrogen evolution in both acidic and alkaline solutions. Chem. Eng. J. 2021, 409, 128158.

8. Wang, D.; Zhang, X.; Bao, S.; Zhang, Z.; Fei, H.; Wu, Z. Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution. J. Mater. Chem. A. 2017, 5, 2681-8.

9. Li, M.; Kuo, Y.; Chu, X.; Chu, D.; Yi, J. MoS2 nanoflower incorporated with Au/Pt nanoparticles for highly efficient hydrogen evolution reaction. Emergent. Mater. 2021, 4, 579-87.

10. Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100-2.

11. Lin, Y. C.; Dumcenco, D. O.; Huang, Y. S.; Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014, 9, 391-6.

12. Tang, Q.; Jiang, D. Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles. ACS. Catal. 2016, 6, 4953-61.

13. Li, W.; Liu, G.; Li, J.; et al. Hydrogen evolution reaction mechanism on 2H-MoS2 electrocatalyst. Appl. Surf. Sci. 2019, 498, 143869.

14. Tang, J.; Huang, J.; Ding, D.; Zhang, S.; Deng, X. Research progress of 1T-MoS2 in electrocatalytic hydrogen evolution. Int. J. Hydrogen. Energ. 2022, 47, 39771-95.

15. Li, M.; Zhou, Z.; Hu, L.; et al. Hydrazine hydrate intercalated 1T-dominant MoS2 with superior ambient stability for highly efficient electrocatalytic applications. ACS. Appl. Mater. Inter. 2022, 14, 16338-47.

16. Lei, Z.; Sathish, C.; Liu, Y.; et al. Single metal atoms catalysts-promising candidates for next generation energy storage and conversion devices. EcoMat 2022, 4, e12186.

17. Levy, R. B.; Boudart, M. Platinum-like behavior of tungsten carbide in surface catalysis. Science 1973, 181, 547-9.

18. Li, M.; Selvarajan, P.; Wang, S.; et al. Thermostable 1T-MoS2 nanosheets achieved by spontaneous intercalation of Cu single atoms at room temperature and their enhanced HER performance. Small. Struct. 2023, 4, 2300010.

19. Zhao, X.; Ma, X.; Lu, Q.; et al. FeS2-doped MoS2 nanoflower with the dominant 1T-MoS2 phase as an excellent electrocatalyst for high-performance hydrogen evolution. Electrochim. Acta. 2017, 249, 72-8.

20. Huang, W.; Zhou, D.; Qi, G.; Liu, X. Fe-doped MoS2nanosheets array for high-current-density seawater electrolysis. Nanotechnology 2021, 32, 415403.

21. Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313-8.

22. Liu, L.; Wu, J.; Wu, L.; et al. Phase-selective synthesis of 1T' MoS2 monolayers and heterophase bilayers. Nat. Mater. 2018, 17, 1108-14.

23. Geng, X.; Sun, W.; Wu, W.; et al. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat. Commun. 2016, 7, 10672.

24. Nayak, A. P.; Pandey, T.; Voiry, D.; et al. Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide. Nano. Lett. 2015, 15, 346-53.

25. Park, M. J.; Yi, S. G.; Kim, J. H.; Yoo, K. H. Metal-insulator crossover in multilayered MoS2. Nanoscale 2015, 7, 15127-33.

26. Nam, G. H.; He, Q.; Wang, X.; et al. In-plane anisotropic properties of 1T'-MoS2 layers. Adv. Mater. 2019, 31, e1807764.

27. Groot, F. D. Multiplet effects in X-ray spectroscopy. Coordin. Chem. Rev. 2005, 249, 31-63.

28. Mohamed, A. Y.; Park, W. G.; Cho, D. Y. Chemical structure and magnetism of FeOx/Fe2O3 interface studied by X-ray absorption spectroscopy. Magnetochemistry 2020, 6, 33.

29. Hocking, R. K.; DeBeer, G. S.; Raymond, K. N.; Hodgson, K. O.; Hedman, B.; Solomon, E. I. Fe L-edge X-ray absorption spectroscopy determination of differential orbital covalency of siderophore model compounds: electronic structure contributions to high stability constants. J. Am. Chem. Soc. 2010, 132, 4006-15.

30. Hocking, R. K.; Wasinger, E. C.; Yan, Y. L.; et al. Fe L-edge X-ray absorption spectroscopy of low-spin heme relative to non-heme Fe complexes: delocalization of Fe d-electrons into the porphyrin ligand. J. Am. Chem. Soc. 2007, 129, 113-25.

31. Baker, M. L.; Mara, M. W.; Yan, J. J.; Hodgson, K. O.; Hedman, B.; Solomon, E. I. K- and L-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) determination of Differential orbital covalency (DOC) of transition metal sites. Coord. Chem. Rev. 2017, 345, 182-208.

32. Westre, T. E.; Kennepohl, P.; Dewitt, J. G.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. A multiplet analysis of Fe K-edge 1s → 3d pre-edge features of iron complexes. J. Am. Chem. Soc. 1997, 119, 6297-314.

33. Kitajou, A.; Yamaguchi, J.; Hara, S.; Okada, S. Discharge/charge reaction mechanism of a pyrite-type FeS2 cathode for sodium secondary batteries. J. Power. Sources. 2014, 247, 391-5.

34. Mo, J.; Wu, S.; Lau, T.; et al. Transition metal atom-doped monolayer MoS2 in a proton-exchange membrane electrolyzer. Mater. Today. Adv. 2020, 6, 100020.

35. Pattengale, B.; Huang, Y.; Yan, X.; et al. Dynamic evolution and reversibility of single-atom Ni(II) active site in 1T-MoS2 electrocatalysts for hydrogen evolution. Nat. Commun. 2020, 11, 4114.

36. Zheng, J.; Wu, S.; Lu, L.; et al. Structural insight into [Fe-S2-Mo] motif in electrochemical reduction of N2 over Fe1-supported molecular MoS2. Chem. Sci. 2020, 12, 688-95.

37. Ye, J.; Zang, Y.; Wang, Q.; et al. Nitrogen doped FeS2 nanoparticles for efficient and stable hydrogen evolution reaction. J. Energy. Chem. 2021, 56, 283-9.

38. Solati, N.; Karakaya, C.; Kaya, S. Advancing the understanding of the structure-activity-durability relation of 2D MoS2 for the hydrogen evolution reaction. ACS. Catal. 2023, 13, 342-54.

39. Singh, A. K.; Prasad, J.; Azad, U. P.; et al. Vanadium doped few-layer ultrathin MoS2 nanosheets on reduced graphene oxide for high-performance hydrogen evolution reaction. RSC. Adv. 2019, 9, 22232-9.

40. Shi, Y.; Zhou, Y.; Yang, D. R.; et al. Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. J. Am. Chem. Soc. 2017, 139, 15479-85.

41. Hu, J.; Wu, J.; Zhang, S.; et al. One-pot Fabrication of 2D/2D CdIn2S4/In2S3 heterojunction for boosting photocatalytic Cr(VI) reduction. Catalysts 2023, 13, 826.

42. Geng, X.; Singh, G.; Sathish, C.; et al. Biomass derived nanoarchitectonics of porous carbon with tunable oxygen functionalities and hierarchical structures and their superior performance in CO2 adsorption and energy storage. Carbon 2023, 214, 118347.

43. Ying, T.; Yu, T.; Qi, Y.; Chen, X.; Hosono, H. High entropy van der waals materials. Adv. Sci. 2022, 9, e2203219.

44. Kozdra, S.; Wójcik, A.; Das, T.; Michałowski, P. P. From DFT investigations of oxygen-implanted molybdenum disulfide to temperature-induced stabilization of MoS2/MoO3 heterostructure. Appl. Sur. Sci. 2023, 631, 157547.

45. Zander, J.; Timm, J.; Weiss, M.; Marschall, R. Light-induced ammonia generation over defective carbon nitride modified with pyrite. Adv. Energy. Mater. 2022, 12, 2202403.

46. Wolski, S. C.; Kuper, J.; Hänzelmann, P.; et al. Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD. PLoS. Biol. 2008, 6, e149.

47. Mahmood, N.; Yao, Y.; Zhang, J. W.; Pan, L.; Zhang, X.; Zou, J. J. Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Adv. Sci. 2018, 5, 1700464.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/