REFERENCES

1. Simon, P.; Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 2020, 19, 1151-63.

2. Wang, Y.; Song, Y.; Xia, Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925-50.

3. Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Electrochemical measurements can distinguish between different types of energy storage materials and their underlying mechanisms. Science 2014, 343, 1210-1.

4. Yin, J.; Zhang, W.; Alhebshi, N. A.; Salah, N.; Alshareef, H. N. Synthesis strategies of porous carbon for supercapacitor applications. Small. Method. 2020, 4, 1900853.

5. Li, T.; Ma, R.; Lin, J.; et al. The synthesis and performance analysis of various biomass-based carbon materials for electric double-layer capacitors: a review. Int. J. Energy. Res. 2020, 44, 2426-54.

6. Xiao, X.; Song, H.; Lin, S.; et al. Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nat. Commun. 2016, 7, 11296.

7. Wang, T.; Chen, H. C.; Yu, F.; Zhao, X. S.; Wang, H. Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy. Storage. Mater. 2019, 16, 545-73.

8. Naskar, P.; Maiti, A.; Chakraborty, P.; Kundu, D.; Biswas, B.; Banerjee, A. Chemical supercapacitors: a review focusing on metallic compounds and conducting polymers. J. Mater. Chem. A. 2021, 9, 1970-2017.

9. Vahidmohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581.

10. Zhou, S.; Zhang, P.; Li, Y.; et al. Ultrastable organic anode enabled by electrochemically active MXene binder toward advanced potassium ion storage. ACS. Nano. 2024, 18, 16027-40.

11. Naguib, M.; Barsoum, M. W.; Gogotsi, Y. Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 2021, 33, 2103393.

12. Soomro, R. A.; Zhang, P.; Fan, B.; Wei, Y.; Xu, B. Progression in the oxidation stability of MXenes. Nano-Micro. Lett. 2023, 15, 108.

13. Zhang, J.; Kong, N.; Uzun, S.; et al. Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 2020, 32, 2001093.

14. Zhu, Q.; Li, J.; Simon, P.; Xu, B. Two-dimensional MXenes for electrochemical capacitor applications: progress, challenges and perspectives. Energy. Storage. Mater. 2021, 35, 630-60.

15. Xu, X.; Guo, T.; Lanza, M.; Alshareef, H. N. Status and prospects of MXene-based nanoelectronic devices. Matter 2023, 6, 800-37.

16. Zhu, Y.; Wang, S.; Ma, J.; Das, P.; Zheng, S.; Wu, Z. S. Recent status and future perspectives of 2D MXene for micro-supercapacitors and micro-batteries. Energy. Storage. Mater. 2022, 51, 500-26.

17. Zhao, M. Q.; Xie, X.; Ren, C. E.; et al. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 2017, 29, 1702410.

18. Li, K.; Liang, M.; Wang, H.; et al. 3D MXene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 2020, 30, 2000842.

19. Xia, Y.; Mathis, T. S.; Zhao, M. Q.; et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 2018, 557, 409-12.

20. Zhang, P.; Zhu, Q.; Soomro, R. A.; et al. In situ ice template approach to fabricate 3D flexible MXene film-based electrode for high performance supercapacitors. Adv. Funct. Mater. 2020, 30, 2000922.

21. Lv, K.; Zhang, J.; Zhao, X.; Kong, N.; Tao, J.; Zhou, J. Understanding the effect of pore size on electrochemical capacitive performance of MXene foams. Small 2022, 18, 2202203.

22. Shang, T.; Lin, Z.; Qi, C.; et al. 3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 2019, 29, 1903960.

23. Yang, C.; Wu, X.; Xia, H.; et al. 3D printed template-assisted assembly of additive-free Ti3C2Tx MXene microlattices with customized structures toward high areal capacitance. ACS. Nano. 2022, 16, 2699-710.

24. Lukatskaya, M. R.; Kota, S.; Lin, Z.; et al. Ultra-high-rate pseudocapacitive energy storage in Two-dimensional transition metal carbides. Nat. Energy. 2017, 2, 17105.

25. Wu, Q.; Xue, Y.; Li, P.; Wang, Y.; Wu, F. High specific capacitance and long cycle stability of few-layered hexagonal Ti3C2 free-standing film constructed with spiral chiral Hexagon Ti3AlC2. Appl. Surf. Sci. 2023, 609, 155329.

26. Zhou, Y.; Maleski, K.; Anasori, B.; et al. Ti3C2Tx MXene-reduced graphene oxide composite electrodes for stretchable supercapacitors. ACS. Nano. 2020, 14, 3576-86.

27. Chen, H.; Yu, L.; Lin, Z.; et al. Carbon nanotubes enhance flexible MXene films for high-rate supercapacitors. J. Mater. Sci. 2020, 55, 1148-56.

28. Chen, W.; Zhang, D.; Yang, K.; Luo, M.; Yang, P.; Zhou, X. MXene (Ti3C2Tx)/cellulose nanofiber/porous carbon film as free-standing electrode for ultrathin and flexible supercapacitors. Chem. Eng. J. 2021, 413, 127524.

29. Zhao, Y.; Xue, K.; Yu, D. Y. W. Tuning Electrolyte solvation structure and CEI film to enable long lasting FSI--based dual-ion battery. Adv. Funct. Mater. 2023, 33, 2300305.

30. Tai, Z.; Zhang, Q.; Liu, Y.; Liu, H.; Dou, S. Activated carbon from the graphite with increased rate capability for the potassium ion battery. Carbon 2017, 123, 54-61.

31. Sarycheva, A.; Gogotsi, Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 2020, 32, 3480-8.

32. Wei, Y.; Hou, W.; Zhang, P.; Soomro, R. A.; Xu, B. Bi2S3 nanorods encapsulated in iodine-doped graphene frameworks with enhanced potassium storage properties. Chin. Chem. Lett. 2022, 33, 3212-6.

33. Zhang, P.; Li, J.; Yang, D.; Soomro, R. A.; Xu, B. Flexible carbon dots-intercalated MXene film electrode with outstanding volumetric performance for supercapacitors. Adv. Funct. Mater. 2023, 33, 2209918.

34. Wang, M.; Cheng, Y.; Zhang, H.; et al. Nature-inspired interconnected Macro/Meso/Micro-porous MXene electrode. Adv. Funct. Mater. 2023, 33, 2211199.

35. Halim, J.; Cook, K. M.; Naguib, M.; et al. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 2016, 362, 406-17.

36. Bashir, T.; Ismail, S. A.; Wang, J.; Zhu, W.; Zhao, J.; Gao, L. MXene terminating groups =O, -F or -OH, -F or =O, -OH, -F, or =O, -OH, -Cl? J. Energy. Chem. 2023, 76, 90-104.

37. Liu, Y.; Zhang, X.; Zhang, W.; et al. MXene-based quantum dots optimize hydrogen production via spontaneous evolution of Cl- to O-terminated surface groups. Energy. Environ. Mater. 2023, 6, 12438.

38. Boidi, G.; Zambrano, D.; Broens, M. I.; et al. Influence of ex-situ annealing on the friction and wear performance of multi-layer Ti3C2Tx coatings. Appl. Mater. Today. 2024, 36, 102020.

39. Wang, G.; Lin, Z.; Jin, S.; Li, M.; Jing, L. Gelatin-derived honeycomb like porous carbon for high mass loading supercapacitors. J. Energy. Storage. 2022, 45, 103525.

40. Mičušík, M.; Šlouf, M.; Stepura, A.; et al. Aging of 2D MXene nanoparticles in air: an XPS and TEM study. Appl. Surf. Sci. 2023, 610, 155351.

41. Zhou, T.; Wu, C.; Wang, Y.; et al. Super-tough MXene-functionalized graphene sheets. Nat. Commun. 2020, 11, 2077.

42. Deng, Z.; Jiang, P.; Wang, Z.; Xu, L.; Yu, Z. Z.; Zhang, H. B. Scalable production of catecholamine-densified MXene coatings for electromagnetic shielding and infrared stealth. Small 2023, 19, 2304278.

43. Wan, S.; Li, X.; Wang, Y.; et al. Strong sequentially bridged MXene sheets. Proc. Natl. Acad. Sci. USA. 2020, 117, 27154-61.

44. Usman, K. A. S.; Zhang, J.; Hegh, D. Y.; et al. Sequentially bridged Ti3C2Tx MXene sheets for high performance applications. Adv. Mater. Inter. 2021, 8, 2002043.

45. Zhan, C.; Naguib, M.; Lukatskaya, M.; Kent, P. R. C.; Gogotsi, Y.; Jiang, D. E. Understanding the MXene pseudocapacitance. J. Phys. Chem. Lett. 2018, 9, 1223-8.

46. Zhang, X.; Liu, Y.; Dong, S.; Yang, J.; Liu, X. Surface modified MXene film as flexible electrode with ultrahigh volumetric capacitance. Electrochim. Acta. 2019, 294, 233-9.

47. Wu, Z.; Liu, X.; Shang, T.; et al. Reassembly of MXene hydrogels into flexible films towards compact and ultrafast supercapacitors. Adv. Funct. Mater. 2021, 31, 2102874.

48. Wang, J.; Hu, Y.; Yang, B.; Wang, X.; Qin, J.; Cao, M. Mechanochemistry-induced biaxial compressive strain engineering in MXenes for boosting lithium storage kinetics. Nano. Energy. 2021, 87, 106053.

49. Tang, J.; Mathis, T.; Zhong, X.; et al. Optimizing ion pathway in titanium carbide MXene for practical high-rate supercapacitor. Adv. Energy. Mater. 2021, 27, 2003025.

50. Zhang, P.; Soomro, R. A.; Guan, Z.; Sun, N.; Xu, B. 3D carbon-coated MXene architectures with high and ultrafast lithium/sodium-ion storage. Energy. Storage. Mater. 2020, 29, 163-71.

51. Hwang, S. K.; Patil, S. J.; Chodankar, N. R.; Huh, Y. S.; Han, Y. K. An aqueous high-performance hybrid supercapacitor with MXene and polyoxometalates electrodes. Chem. Eng. J. 2022, 427, 131854.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/