1. Wu X, Ma J, Wang J, Zhang X, Zhou G, Liang Z. Progress, key issues, and future prospects for Li-ion battery recycling. Glob Chall 2022;6:2200067.
2. Cui Z, Hu W, Zhang G, Zhang Z, Chen Z. An extended kalman filter based SOC estimation method for Li-ion battery. Energy Rep 2022;8:81-7.
3. Bibin C, Vijayaram M, Suriya V, Sai Ganesh R, Soundarraj S. A review on thermal issues in Li-ion battery and recent advancements in battery thermal management system. Mater Today Proc 2020;33:116-28.
4. Singh S. Energy crisis and climate change. In: Energy: crises, challenges and solutions, Singh P, Singh S, Kumar G, Baweja P, editors; 2021. pp.1-17.
5. Blakers A, Stocks M, Lu B, Cheng C. A review of pumped hydro energy storage. Prog Energy 2021;3:022003.
6. Javed MS, Ma T, Jurasz J, Amin MY. Solar and wind power generation systems with pumped hydro storage: review and future perspectives. Renew Energy 2020;148:176-92.
7. Mitali J, Dhinakaran S, Mohamad A. Energy storage systems: a review. Energy Stor Sav 2022;1:166-216.
8. Poullikkas A. A comparative overview of large-scale battery systems for electricity storage. Renew Sustain Energy Rev 2013;27:778-88.
9. Roscher MA, Vetter J, Sauer DU. Cathode material influence on the power capability and utilizable capacity of next generation lithium-ion batteries. J Power Sources 2010;195:3922-7.
10. Gailani A, Mokidm R, El-Dalahmeh M, El-Dalahmeh M, Al-Greer M. Analysis of lithium-ion battery cells degradation based on different manufacturers. In: 55th international universities power engineering conference (UPEC), Turin, Italy, 1-4 Sep 2020.
11. Yan L, Zeng X, Li Z, et al. An innovation: dendrite free quinone paired with ZnMn2O4 for zinc ion storage. Mater Today Energy 2019;13:323-30.
12. Kubota K, Dahbi M, Hosaka T, Kumakura S, Komaba S. Towards K-ion and Na-ion batteries as “beyond li-ion”. Chem Rec 2018;18:459-79.
13. Blomgren GE. The development and future of lithium ion batteries. J Electrochem Soc 2017;164:A5019-25.
14. Cao L, Li D, Soto FA, et al. Highly reversible aqueous zinc batteries enabled by zincophilic-zincophobic interfacial layers and interrupted hydrogen-bond electrolytes. Angew Chem Int Ed 2021;60:18845-51.
15. Goikolea E, Palomares V, Wang S, et al. Na-ion batteries - approaching old and new challenges. Adv Energy Mater 2020;10:2002055.
16. Kim J, Elabd A, Chung SY, Coskun A, Choi JW. Covalent triazine frameworks incorporating charged polypyrrole channels for high-performance lithium-sulfur batteries. Chem Mater 2020;32:4185-93.
17. Wang C, Wu X, Chen Y, et al. Recognition and application of catalysis in secondary rechargeable batteries. ACS Catal 2023;13:10641-50.
18. Fei Z, Xing Y, Dong P, Meng Q, Zhang Y. Efficient direct regeneration of spent LiCoO2 cathode materials by oxidative hydrothermal solution. JOM 2023;75:3632-42.
19. Wang Y, Liu K, Wang B. Coating strategies of Ni-rich layered cathode in LIBs. Chem J Chin Univ 2021;42:1514-29.
20. Tan A, Wen Y, Huang J, et al. Multiredox tripyridine-triazine molecular cathode for lithium-organic battery. J Power Sources 2023;567:232963.
21. Lei Z, Chen X, Sun W, Zhang Y, Wang Y. Exfoliated triazine-based covalent organic nanosheets with multielectron redox for high-performance lithium organic batteries. Adv Energy Mater 2019;9:1801010.
22. Lu Y, Chen J. Prospects of organic electrode materials for practical lithium batteries. Nat Rev Chem 2020;4:127-42.
23. Jung MH, Ghorpade RV. Polyimide containing tricarbonyl moiety as an active cathode for rechargeable Li-ion batteries. J Electrochem Soc 2018;165:A2476.
24. Zhang H, Sun W, Chen X, Wang Y. Few-layered fluorinated triazine-based covalent organic nanosheets for high-performance alkali organic batteries. ACS Nano 2019;13:14252-61.
25. Xiong P, Zhang S, Wang R, et al. Covalent triazine frameworks for advanced energy storage: challenges and new opportunities. Energy Environ Sci 2023;16:3181-213.
26. Zhao-Karger Z, Gao P, Ebert T, et al. New organic electrode materials for ultrafast electrochemical energy storage. Adv Mater 2019;31:e1806599.
27. Zhang S, Han D, Ren S, Xiao M, Wang S, Meng Y. Immobilization strategies of organic electrode materials. Prog Chem 2020;32:103-18.
28. Lee S, Hong J, Kang K. Redox-active organic compounds for future sustainable energy storage system. Adv Energy Mater 2020;10:2001445.
29. Jia M, Mao C, Niu Y, et al. A selenium-confined porous carbon cathode from silk cocoons for Li-Se battery applications. RSC Adv 2015;5:96146-50.
30. Sakaushi K, Nickerl G, Wisser FM, et al. An energy storage principle using bipolar porous polymeric frameworks. Angew Chem Int Ed 2012;51:7850-4.
31. Wang B, Yuan F, Wang W, et al. A carbon microtube array with a multihole cross profile: releasing the stress and boosting long-cycling and high-rate potassium ion storage. J Mater Chem A 2019;7:25845-52.
32. Chu J, Cheng L, Chen L, Wang HG, Cui F, Zhu G. Integrating multiple redox-active sites and universal electrode-active features into covalent triazine frameworks for organic alkali metal-ion batteries. Chem Eng J 2023;451:139016.
33. Wu C, Hu M, Yan X, Shan G, Liu J, Yang J. Azo-linked covalent triazine-based framework as organic cathodes for ultrastable capacitor-type lithium-ion batteries. Energy Stor Mater 2021;36:347-54.
34. Yadav D, Subodh, Awasthi SK. Recent advances in the design, synthesis and catalytic applications of triazine-based covalent organic polymers. Mater Chem Front 2022;6:1574-605.
35. Srinivasan P, Dhingra K, Kailasam K. A critical insight into porous organic polymers (POPs) and its perspectives for next-generation chemiresistive exhaled breath sensing: a state-of-the-art review. J Mater Chem A 2023;11:17418-51.
36. Wang Z, Gu S, Cao L, et al. Redox of dual-radical intermediates in a methylene-linked covalent triazine framework for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 2021;13:514-21.
37. Jiang F, Wang Y, Qiu T, et al. Synthesis of biphenyl-linked covalent triazine frameworks with excellent lithium storage performance as anode in lithium ion battery. J Power Sources 2022;523:231041.
38. Lv S, He Q, Zhang Y, et al. High performance cathode materials for lithium-ion batteries based on a phenothiazine-based covalent triazine framework. New J Chem 2023;47:10911-5.
39. Kuhn P, Antonietti M, Thomas A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew Chem Int Ed 2008;47:3450-3.
40. Ren S, Bojdys MJ, Dawson R, et al. Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Adv Mater 2012;24:2357-61.
41. Yu SY, Mahmood J, Noh HJ, et al. Direct synthesis of a covalent triazine-based framework from aromatic amides. Angew Chem Int Ed 2018;57:8438-42.
42. Zhang W, Li C, Yuan YP, et al. Highly energy- and time-efficient synthesis of porous triazine-based framework: microwave-enhanced ionothermal polymerization and hydrogen uptake. J Mater Chem 2010;20:6413-5.
43. Lan ZA, Wu M, Fang Z, et al. Ionothermal synthesis of covalent triazine frameworks in a NaCl-KCl-ZnCl2 eutectic salt for the hydrogen evolution reaction. Angew Chem Int Ed 2022;61:e202201482.
44. Sun T, Liang Y, Luo W, Zhang L, Cao X, Xu Y. A general strategy for kilogram-scale preparation of highly crystal-line covalent triazine frameworks. Angew Chem Int Ed 2022;61:e202203327.
45. Anderson DR, Holovka JM. Thermally resistant polymers containing the s-triazine ring. J Polym Sci A-1 Polym Chem 1966;4:1689-702.
46. Ren S, Zeng D, Zhong H, Wang Y, Qian S, Fang Q. Star-shaped donor-pi-acceptor conjugated oligomers with 1,3,5-triazine cores: convergent synthesis and multifunctional properties. J Phys Chem B 2010;114:10374-83.
47. Huang W, Wang ZJ, Ma BC, et al. Hollow nanoporous covalent triazine frameworks via acid vapor-assisted solid phase synthesis for enhanced visible light photoactivity. J Mater Chem A 2016;4:7555-9.
48. Ma K, Li J, Liu J, et al. Covalent triazine framework featuring single electron Co2+ centered in intact porphyrin units for efficient CO2 photoreduction. Appl Surf Sci 2023;629:157453.
49. Liu J, Zan W, Li K, Yang Y, Bu F, Xu Y. Solution synthesis of semiconducting two-dimensional polymer via trimerization of carbonitrile. J Am Chem Soc 2017;139:11666-9.
50. Zhu X, Tian C, Mahurin SM, et al. A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation. J Am Chem Soc 2012;134:10478-84.
51. Zeng T, Li S, Shen Y, et al. Sodium doping and 3D honeycomb nanoarchitecture: key features of covalent triazine-based frameworks (CTF) organocatalyst for enhanced solar-driven advanced oxidation processes. Appl Catal B Environ 2019;257:117915.
52. Zhao W, Hu K, Hu C, Wang X, Yu A, Zhang S. Silica gel microspheres decorated with covalent triazine-based frameworks as an improved stationary phase for high performance liquid chromatography. J Chromatogr A 2017;1487:83-8.
53. Bhunia A, Esquivel D, Dey S, et al. A photoluminescent covalent triazine framework: CO2 adsorption, light-driven hydrogen evolution and sensing of nitroaromatics. J Mater Chem A 2016;4:13450-7.
54. Liu J, Lyu P, Zhang Y, Nachtigall P, Xu Y. New layered triazine framework/exfoliated 2D polymer with superior sodium-storage properties. Adv Mater 2018;30:1705401.
55. Wang K, Yang LM, Wang X, et al. Covalent triazine frameworks via a low-temperature polycondensation approach. Angew Chem Int Ed 2017;56:14149-53.
56. Wang H, Qiu N, Kong X, et al. Novel carbazole-based porous organic polymer for efficient iodine capture and rhodamine B adsorption. ACS Appl Mater Interfaces 2023;15:14846-53.
57. Han X, Zhao F, Shang Q, Zhao J, Zhong X, Zhang J. Effect of nitrogen atom introduction on the photocatalytic hydrogen evolution activity of covalent triazine frameworks: experimental and theoretical study. ChemSusChem 2022;15:e202200828.
58. Asadi P, Taymouri S, Khodarahmi G, et al. Novel nanoscale vanillin based covalent triazine framework as a novel carrier for sustained release of imatinib. Polym Adv Technol 2023;34:1358-66.
59. Yildirim O, Derkus B. Triazine-based 2D covalent organic frameworks improve the electrochemical performance of enzymatic biosensors. J Mater Sci 2020;55:3034-44.
60. Sharma RK, Yadav P, Yadav M, et al. Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications. Mater Horiz 2020;7:411-54.
61. Wang D, Zheng Z, Hong C, Liu Y, Pan C. Michael addition polymerizations of difunctional amines (AA′) and triacrylamides (B3). J Polym Sci A Polym Chem 2006;44:6226-42.
62. Liu M, Huang Q, Wang S, et al. Crystalline covalent triazine frameworks by in situ oxidation of alcohols to aldehyde monomers. Angew Chem Int Ed 2018;57:11968-72.
63. You Q, Wang F, Wu C, et al. Synthesis of 1,3,5-triazines via Cu(OAc)2-catalyzed aerobic oxidative coupling of alcohols and amidine hydrochlorides. Org Biomol Chem 2015;13:6723-7.
64. Zha GF, Fang WY, Leng J, Qin HL. A simple, mild and general oxidation of alcohols to aldehydes or ketones by SO2F2/K2CO3 using DMSO as solvent and oxidant. Adv Synth Catal 2019;361:2262-7.
65. Puthiaraj P, Cho SM, Lee YR, Ahn WS. Microporous covalent triazine polymers: efficient friedel-crafts synthesis and adsorption/storage of CO2 and CH4. J Mater Chem A 2015;3:6792-7.
66. Dey S, Bhunia A, Esquivel D, Janiak C. Covalent triazine-based frameworks (CTFs) from triptycene and fluorene motifs for CO2 adsorption. J Mater Chem A 2016;4:6259-63.
67. Troschke E, Grätz S, Lübken T, Borchardt L. Mechanochemical friedel-crafts alkylation-A sustainable pathway towards porous organic polymers. Angew Chem Int Ed 2017;56:6859-63.
68. Fang XC, Geng TM, Wang FQ, Xu WH. The synthesis of conjugated microporous polymers via Friedel-Crafts reaction of 2,4,6-trichloro-1,3,5-triazine with thienyl derivatives for fluorescence sensing to 2,4-dinitrophenol and capturing iodine. J Solid State Chem 2022;307:122818.
69. Lim H, Cha MC, Chang JY. Preparation of microporous polymers based on 1,3,5-triazine units showing high CO2 adsorption capacity. Macro Chem Phys 2012;213:1385-90.
70. Artz J. Covalent triazine-based frameworks - tailor-made catalysts and catalyst supports for molecular and nanoparticulate species. ChemCatChem 2018;10:1753-71.
71. Ravi S, Kim J, Choi Y, et al. Metal-free amine-anchored triazine-based covalent organic polymers for selective CO2 adsorption and conversion to cyclic carbonates under mild conditions. ACS Sustain Chem Eng 2023;11:1190-9.
72. Feng G, Yang M, Chen H, Liu B, Liu Y, Li H. Triazine-containing polytriphenylimidazolium network for heterogeneous catalysis of CO2 conversion to cyclic carbonates. Sep Purif Technol 2023;323:124484.
73. Geng TM, Fang XC, Wang FQ, Zhu F. The synthesis of covalent triazine-based frameworks via friedel-crafts reactions of cyanuric chloride with thienyl and carbazolyl derivatives for fluorescence sensing to picric acid, iodine and capturing iodine. Macro Mater Eng 2021;306:2100461.
74. Puthiaraj P, Kim SS, Ahn WS. Covalent triazine polymers using a cyanuric chloride precursor via friedel-crafts reaction for CO2 adsorption/separation. Chem Eng J 2016;283:184-92.
75. Rightmire NR, Hanusa TP. Advances in organometallic synthesis with mechanochemical methods. Dalton Trans 2016;45:2352-62.
76. Xu C, De S, Balu AM, Ojeda M, Luque R. Mechanochemical synthesis of advanced nanomaterials for catalytic applications. Chem Commun 2015;51:6698-713.
77. Krusenbaum A, Kraus FJL, Hutsch S, et al. The rapid mechanochemical synthesis of microporous covalent triazine networks: elucidating the role of chlorinated linkers by a solvent-free approach. Adv Sustain Syst 2023;7:2200477.
78. Liang Y, Dong H, Aurbach D, Yao Y. Publisher correction: current status and future directions of multivalent metal-ion batteries. Nat Energy 2020;5:822.
79. Mishra A, Mehta A, Basu S, et al. Electrode materials for lithium-ion batteries. Mater Sci Energy Technol 2018;1:182-7.
80. Ohzuku T, Brodd RJ. An overview of positive-electrode materials for advanced lithium-ion batteries. J Power Sources 2007;174:449-56.
81. Wang KX, Li XH, Chen JS. Surface and interface engineering of electrode materials for lithium-ion batteries. Adv Mater 2015;27:527-45.
82. Esser B, Dolhem F, Becuwe M, Poizot P, Vlad A, Brandell D. A perspective on organic electrode materials and technologies for next generation batteries. J Power Sources 2021;482:228814.
83. Shen X, Zhang XQ, Ding F, et al. Advanced electrode materials in lithium batteries: retrospect and prospect. Energy Mater Adv 2021;2021:1205324.
84. Gong Z, Yang Y. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ Sci 2011;4:3223-42.
85. Xu B, Qian D, Wang Z, Meng YS. Recent progress in cathode materials research for advanced lithium ion batteries. Mater Sci Eng R Rep 2012;73:51-65.
86. He W, Guo W, Wu H, et al. Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries. Adv Mater 2021;33:e2005937.
87. Lee W, Muhammad S, Sergey C, et al. Advances in the cathode materials for lithium rechargeable batteries. Angew Chem Int Ed 2020;59:2578-605.
88. Kraytsberg A, Ein-Eli Y. Higher, stronger, better... a review of 5 volt cathode materials for advanced lithium-ion batteries. Adv Energy Mater 2012;2:922-39.
89. Li M, Lu J, Chen Z, Amine K. 30 years of lithium-ion batteries. Adv Mater 2018;30:e1800561.
90. Wang R, Wang L, Fan Y, Yang W, Zhan C, Liu G. Controversy on necessity of cobalt in nickel-rich cathode materials for lithium-ion batteries. J Ind Eng Chem 2022;110:120-30.
91. Su Y, Liu Y, Liu P, et al. Compact coupled graphene and porous polyaryltriazine-derived frameworks as high performance cathodes for lithium-ion batteries. Angew Chem Int Ed 2015;54:1812-6.
92. See KA, Hug S, Schwinghammer K, et al. Lithium charge storage mechanisms of cross-linked triazine networks and their porous carbon derivatives. Chem Mater 2015;27:3821-9.
93. Woo SW, Dokko K, Nakano H, Kanamura K. Preparation of three dimensionally ordered macroporous carbon with mesoporous walls for electric double-layer capacitors. J Mater Chem 2008;18:1674-80.
94. Wang DW, Li F, Liu M, Lu GQ, Cheng HM. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed 2008;47:373-6.
95. Liu HJ, Wang J, Wang CX, Xia YY. Ordered hierarchical mesoporous/microporous carbon derived from mesoporous titanium-carbide/carbon composites and its electrochemical performance in supercapacitor. Adv Energy Mater 2011;1:1101-8.
96. Liu HJ, Wang XM, Cui WJ, Dou YQ, Zhao DY, Xia YY. Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells. J Mater Chem 2010;20:4223-30.
97. Yuan R, Kang W, Zhang C. Rational design of porous covalent triazine-based framework composites as advanced organic lithium-ion battery cathodes. Materials 2018;11:937.
98. Yang DH, Yao ZQ, Wu D, Zhang YH, Zhou Z, Bu XH. Structure-modulated crystalline covalent organic frameworks as high-rate cathodes for Li-ion batteries. J Mater Chem A 2016;4:18621-7.
99. Wang S, Wang Q, Shao P, et al. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J Am Chem Soc 2017;139:4258-61.
100. Xu F, Jin S, Zhong H, et al. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage. Sci Rep 2015;5:8225.
101. Jiao L, Hu Y, Ju H, et al. From covalent triazine-based frameworks to N-doped porous carbon/reduced graphene oxide nanosheets: efficient electrocatalysts for oxygen reduction. J Mater Chem A 2017;5:23170-8.
102. Zhu J, Zhuang X, Yang J, Feng X, Hirano S. Graphene-coupled nitrogen-enriched porous carbon nanosheets for energy storage. J Mater Chem A 2017;5:16732-9.
103. Guan R, Zhong L, Wang S, et al. Synergetic covalent and spatial confinement of sulfur species by phthalazinone-containing covalent triazine frameworks for ultrahigh performance of Li-S batteries. ACS Appl Mater Interfaces 2020;12:8296-305.
104. Haldar S, Roy K, Kushwaha R, Ogale S, Vaidhyanathan R. Chemical exfoliation as a controlled route to enhance the anodic performance of COF in LIB. Adv Energy Mater 2019;9:1902428.
105. Wang Z, Li Y, Liu P, et al. Few layer covalent organic frameworks with graphene sheets as cathode materials for lithium-ion batteries. Nanoscale 2019;11:5330-5.
106. Zhao G, Li H, Gao Z, et al. Dual-active-center of polyimide and triazine modified atomic-layer covalent organic frameworks for high-performance Li storage. Adv Funct Mater 2021;31:2101019.
107. Ma T, Zhao Q, Wang J, Pan Z, Chen J. A sulfur heterocyclic quinone cathode and a multifunctional binder for a high-performance rechargeable lithium-ion battery. Angew Chem Int Ed 2016;55:6428-32.
108. Peng C, Ning GH, Su J, et al. Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nat Energy 2017;2:1-9.
109. Luo C, Ji X, Hou S, et al. Azo compounds derived from electrochemical reduction of nitro compounds for high performance Li-ion batteries. Adv Mater 2018;30:e1706498.
110. Chen X, Zhang H, Yan P, et al. Bipolar fluorinated covalent triazine framework cathode with high lithium storage and long cycling capability. RSC Adv 2022;12:11484-91.
111. Li Y, Zheng S, Liu X, et al. Conductive microporous covalent triazine-based framework for high-performance electrochemical capacitive energy storage. Angew Chem Int Ed 2018;57:7992-6.
112. Liu W, Wang K, Zhan X, et al. Highly connected three-dimensional covalent organic framework with flu topology for high-performance Li-S batteries. J Am Chem Soc 2023;145:8141-9.
113. Xu J, Zhu C, Song S, Fang Q, Zhao J, Shen Y. A nanocubicle-like 3D adsorbent fabricated by in situ growth of 2D heterostructures for removal of aromatic contaminants in water. J Hazard Mater 2022;423:127004.
114. Ren L, Lian L, Zhang X, et al. Boosting lithium storage in covalent triazine framework for symmetric all-organic lithium-ion batteries by regulating the degree of spatial distortion. J Colloid Interface Sci 2024;660:1039-47.
115. Sakaushi K, Hosono E, Nickerl G, et al. Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device. Nat Commun 2013;4:1485.
116. Xu H, Yan Q, Yao W, Lee CS, Tang Y. Mainstream optimization strategies for cathode materials of sodium-ion batteries. Small Struct 2022;3:2100217.
117. Liu Q, Hu Z, Li W, et al. Sodium transition metal oxides: the preferred cathode choice for future sodium-ion batteries? Energy Environ Sci 2021;14:158-79.
118. Perveen T, Siddiq M, Shahzad N, Ihsan R, Ahmad A, Shahzad MI. Prospects in anode materials for sodium ion batteries - a review. Renew Sustain Energy Rev 2020;119:109549.
119. Yang C, Xin S, Mai L, You Y. Materials Design for high-safety sodium-ion battery. Adv Energy Mater 2021;11:2000974.
120. Li K, Wang Y, Gao B, Lv X, Si Z, Wang HG. Conjugated microporous polyarylimides immobilization on carbon nanotubes with improved utilization of carbonyls as cathode materials for lithium/sodium-ion batteries. J Colloid Interface Sci 2021;601:446-53.
121. Shi J, Tang W, Xiong B, Gao F, Lu Q. Molecular design and post-synthetic vulcanization on two-dimensional covalent organic framework@rGO hybrids towards high-performance sodium-ion battery cathode. Chem Eng J 2023;453:139607.
122. Sun R, Hou S, Luo C, et al. A covalent organic framework for fast-charge and durable rechargeable Mg storage. Nano Lett 2020;20:3880-8.
123. Pan B, Huang J, Feng Z, et al. Polyanthraquinone-based organic cathode for high-performance rechargeable magnesium-ion batteries. Adv Energy Mater 2016;6:1600140.
124. Dong H, Liang Y, Tutusaus O, et al. Directing Mg-storage chemistry in organic polymers toward high-energy Mg batteries. Joule 2019;3:782-93.
125. Leisegang T, Meutzner F, Zschornak M, et al. The aluminum-ion battery: a sustainable and seminal concept? Front Chem 2019;7:268.
126. Yuan D, Zhao J, Manalastas Jr. W, Kumar S, Srinivasan M. Emerging rechargeable aqueous aluminum ion battery: status, challenges, and outlooks. Nano Mater Sci 2020;2:248-63.
127. Jayaprakash N, Das SK, Archer LA. The rechargeable aluminum-ion battery. Chem Commun 2011;47:12610-2.
128. Meng J, Zhu L, Haruna AB, Ozoemena KI, Pang Q. Charge storage mechanisms of cathode materials in rechargeable aluminum batteries. Sci China Chem 2021;64:1888-907.
129. Liu Y, Lu Y, Hossain Khan A, et al. Redox-bipolar polyimide two-dimensional covalent organic framework cathodes for durable aluminium batteries. Angew Chem Int Ed 2023;62:e202306091.
130. Tang B, Shan L, Liang S, Zhou J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ Sci 2019;12:3288-304.
131. Fang G, Zhou J, Pan A, Liang S. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett 2018;3:2480-501.
132. Jia X, Liu C, Neale ZG, Yang J, Cao G. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem Rev 2020;120:7795-866.
133. Wang Y, Wang X, Tang J, Tang W. A quinoxalinophenazinedione covalent triazine framework for boosted high-performance aqueous zinc-ion batteries. J Mater Chem A 2022;10:13868-75.
134. Gao X, Sha Y, Lin Q, Cai R, Tade MO, Shao Z. Combustion-derived nanocrystalline LiMn2O4 as a promising cathode material for lithium-ion batteries. J Power Sources 2015;275:38-44.
135. Mikhaylik YV, Akridge JR. Polysulfide shuttle study in the Li/S battery system. J Electrochem Soc 2004;151:A1969.
136. Zhao M, Li BQ, Zhang XQ, Huang JQ, Zhang Q. A perspective toward practical lithium-sulfur batteries. ACS Cent Sci 2020;6:1095-104.
137. Manthiram A, Fu Y, Su YS. Challenges and prospects of lithium-sulfur batteries. ACC Chem Res 2013;46:1125-34.
138. Manthiram A, Chung SH, Zu C. Lithium-sulfur batteries: progress and prospects. Adv Mater 2015;27:1980-2006.
139. Seh ZW, Sun Y, Zhang Q, Cui Y. Designing high-energy lithium-sulfur batteries. Chem Soc Rev 2016;45:5605-34.
140. Ma L, Zhuang HL, Wei S, et al. Enhanced Li-S batteries using amine-functionalized carbon nanotubes in the cathode. ACS Nano 2016;10:1050-9.
141. Zhang T, Zhang L, Zhao L, Huang X, Hou Y. Catalytic effects in the cathode of Li-S batteries: accelerating polysulfides redox conversion. EnergyChem 2020;2:100036.
142. Khazraji MR, Wang J, Wei S. Recent progress of anode protection in Li-S batteries. Energy Technol 2023;11:2200944.
143. Jeong YC, Kim JH, Nam S, Park CR, Yang SJ. Rational design of nanostructured functional interlayer/separator for advanced Li-S batteries. Adv Funct Mater 2018;28:1707411.
144. Pathak D, Mandal BP, Tyagi AK. A new strategic approach to modify electrode and electrolyte for high performance Li-S battery. J Power Sources 2021;488:229456.
145. Li J, Chen C, Chen Y, et al. Polysulfide confinement and highly efficient conversion on hierarchical mesoporous carbon nanosheets for Li-S batteries. Adv Energy Mater 2019;9:1901935.
146. Pei F, An T, Zang J, et al. From hollow carbon spheres to N-doped hollow porous carbon bowls: rational design of hollow carbon host for Li-S batteries. Adv Energy Mater 2016;6:1502539.
147. Chen M, Su Z, Jiang K, Pan Y, Zhang Y, Long D. Promoting sulfur immobilization by a hierarchical morphology of hollow carbon nanosphere clusters for high-stability Li-S battery. J Mater Chem A 2019;7:6250-8.
148. Luo D, Li M, Ma Q, et al. Porous organic polymers for Li-chemistry-based batteries: functionalities and characterization studies. Chem Soc Rev 2022;51:2917-38.
149. Liao H, Ding H, Li B, Ai X, Wang C. Covalent-organic frameworks: potential host materials for sulfur impregnation in lithium-sulfur batteries. J Mater Chem A 2014;2:8854-8.
150. Talapaneni SN, Hwang TH, Je SH, Buyukcakir O, Choi JW, Coskun A. Elemental-sulfur-mediated facile synthesis of a covalent triazine framework for high-performance lithium-sulfur batteries. Angew Chem Int Ed 2016;55:3106-11.
151. Choi JW, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 2016;1:1-16.
152. Je SH, Kim HJ, Kim J, Choi JW, Coskun A. Perfluoroaryl-elemental sulfur SNAr chemistry in covalent triazine frameworks with high sulfur contents for lithium-sulfur batteries. Adv Funct Mater 2017;27:1703947.
153. Wang DG, Tan L, Wang H, Song M, Wang J, Kuang GC. Multiple covalent triazine frameworks with strong polysulfide chemisorption for enhanced lithium-sulfur batteries. ChemElectroChem 2019;6:2777-81.
154. Hou TZ, Xu WT, Chen X, Peng HJ, Huang JQ, Zhang Q. Lithium bond chemistry in lithium-sulfur batteries. Angew Chem Int Ed 2017;56:8178-82.
155. Ren X, Liu Z, Zhang M, Li D, Yuan S, Lu C. Review of cathode in advanced Li-S batteries: the effect of doping atoms at micro levels. ChemElectroChem 2021;8:3457-71.
156. Li M, Wang Y, Sun S, Yang Y, Gu G, Zhang Z. Rational design of an Allyl-rich Triazine-based covalent organic framework host used as efficient cathode materials for Li-S batteries. Chem Eng J 2022;429:132254.
157. Jiang Q, Li Y, Zhao X, et al. Inverse-vulcanization of vinyl functionalized covalent organic frameworks as efficient cathode materials for Li-S batteries. J Mater Chem A 2018;6:17977-81.
158. Xu J, An S, Song X, et al. Towards high performance Li-S batteries via sulfonate-rich COF-modified separator. Adv Mater 2021;33:e2105178.
159. Zhang Y, Guo C, Zhou J, et al. Anisotropically hybridized porous crystalline Li-S battery separators. Small 2023;19:e2206616.
160. Hu X, Jian J, Fang Z, et al. Hierarchical assemblies of conjugated ultrathin COF nanosheets for high-sulfur-loading and long-lifespan lithium-sulfur batteries: fully-exposed porphyrin matters. Energy Stor Mater 2019;22:40-7.
161. Xiao Z, Li L, Tang Y, et al. Covalent organic frameworks with lithiophilic and sulfiphilic dual linkages for cooperative affinity to polysulfides in lithium-sulfur batteries. Energy Stor Mater 2018;12:252-9.
162. Liang Y, Xia T, Chang Z, et al. Boric acid functionalized triazine-based covalent organic frameworks with dual-function for selective adsorption and lithium-sulfur battery cathode. Chem Eng J 2022;437:135314.
163. Mullangi D, Chakraborty D, Pradeep A, et al. Highly stable COF-supported Co/Co(OH)2 nanoparticles heterogeneous catalyst for reduction of nitrile/nitro compounds under mild conditions. Small 2018;14:e1801233.
164. Zhang T, Hu F, Song C, et al. Constructing covalent triazine-based frameworks to explore the effect of heteroatoms and pore structure on electrochemical performance in Li-S batteries. Chem Eng J 2021;407:127141.
165. Gomes R, Bhattacharyya AJ. Carbon nanotube-templated covalent organic framework nanosheets as an efficient sulfur host for room-temperature metal-sulfur batteries. ACS Sustain Chem Eng 2020;8:5946-53.
166. Li W, Zhang Q, Zheng G, Seh ZW, Yao H, Cui Y. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. Nano Lett 2013;13:5534-40.
167. Cao Y, Qi X, Hu K, et al. Conductive polymers encapsulation to enhance electrochemical performance of Ni-rich cathode materials for Li-ion batteries. ACS Appl Mater Interfaces 2018;10:18270-80.
168. Wu F, Zhang K, Liu Y, et al. Polymer electrolytes and interfaces toward solid-state batteries: recent advances and prospects. Energy Stor Mater 2020;33:26-54.
169. Shoji M, Cheng EJ, Kimura T, Kanamura K. Recent progress for all solid state battery using sulfide and oxide solid electrolytes. J Phys D Appl Phys 2019;52:103001.
170. Wu J, Liu S, Han F, Yao X, Wang C. Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv Mater 2021;33:e2000751.
171. Liu H, Liang Y, Wang C, et al. Priority and prospect of sulfide-based solid-electrolyte membrane. Adv Mater 2023;35:e2206013.
172. Guan L, Guo Z, Zhou Q, et al. A highly proton conductive perfluorinated covalent triazine framework via low-temperature synthesis. Nat Commun 2023;14:8114.
173. Hou Z, Xia S, Niu C, et al. Tailoring the interaction of covalent organic framework with the polyether matrix toward high-performance solid-state lithium metal batteries. Carbon Energy 2022;4:506-16.
174. Shi QX, Guan X, Pei HJ, et al. Functional covalent triazine frameworks-based quasi-solid-state electrolyte used to enhance lithium metal battery safety. Batteries Supercaps 2020;3:936-45.
175. Cheng Z, Lu L, Zhang S, et al. Amphoteric covalent organic framework as single Li+ superionic conductor in all-solid-state. Nano Res 2023;16:528-35.
176. Aili D, Kraglund MR, Rajappan SC, et al. Electrode separators for the next-generation alkaline water electrolyzers. ACS Energy Lett 2023;8:1900-10.
177. Henkensmeier D, Cho WC, Jannasch P, et al. Separators and membranes for advanced alkaline water electrolysis. Chem Rev 2024;124:6393-443.
178. Palanisamy G, Thangarasu S, Dharman RK, et al. The growth of biopolymers and natural earthen sources as membrane/separator materials for microbial fuel cells: a comprehensive review. J Energy Chem 2023;80:402-31.
179. Zhu J, Yanilmaz M, Fu K, et al. Understanding glass fiber membrane used as a novel separator for lithium-sulfur batteries. J Membr Sci 2016;504:89-96.
180. Shi QX, Pei HJ, You N, et al. Large-scaled covalent triazine framework modified separator as efficient inhibit polysulfide shuttling in Li-S batteries. Chem Eng J 2019;375:121977.
181. Shi QX, Yang CY, Pei HJ, et al. Layer-by-layer self-assembled covalent triazine framework/electrical conductive polymer functional separator for Li-S battery. Chem Eng J 2021;404:127044.
182. Zuo P, Ye C, Jiao Z, et al. Near-frictionless ion transport within triazine framework membranes. Nature 2023;617:299-305.
183. Yang Z, Wang T, Chen H, et al. Surpassing the organic cathode performance for lithium-ion batteries with robust fluorinated covalent quinazoline networks. ACS Energy Lett 2021;6:41-51.
184. Jiang K, Peng P, Tranca D, et al. Covalent triazine frameworks and porous carbons: perspective from an azulene-based case. Macromol Rapid Commun 2022;43:e2200392.
185. Geng Q, Xu Z, Wang J, Song C, Wu Y, Wang Y. Tailoring covalent triazine frameworks anode for superior Lithium-ion storage via thioether engineering. Chem Eng J 2023;469:143941.
186. Shan J, Liu Y, Su Y, et al. Graphene-directed two-dimensional porous carbon frameworks for high-performance lithium-sulfur battery cathodes. J Mater Chem A 2016;4:314-20.
187. Xu F, Yang S, Jiang G, Ye Q, Wei B, Wang H. Fluorinated, sulfur-rich, covalent triazine frameworks for enhanced confinement of polysulfides in lithium-sulfur batteries. ACS Appl Mater Interfaces 2017;9:37731-8.
188. Yang S, Liu Q, Lu Q, et al. A facile strategy to improve the electrochemical performance of porous organic polymer-based lithium-sulfur batteries. Energy Technol 2019;7:1900583.
189. Feng X, Huang X, Ma Y, Song G, Li H. New structural carbons via industrial gas explosion for hybrid cathodes in Li-S batteries. ACS Sustain Chem Eng 2019;7:12948-54.
190. Troschke E, Kensy C, Haase F, et al. Mechanistic insights into the role of covalent triazine frameworks as cathodes in lithium-sulfur batteries. Batteries Supercaps 2020;3:1069-79.
191. Yan Y, Chen Z, Yang J, et al. Controllable substitution of S radicals on triazine covalent framework to expedite degradation of polysulfides. Small 2020;16:e2004631.
192. Liu XF, Chen H, Wang R, Zang SQ, Mak TCW. Cationic covalent-organic framework as efficient redox motor for high-performance lithium-sulfur batteries. Small 2020;16:e2002932.
193. Meng R, Deng Q, Peng C, et al. Two-dimensional organic-inorganic heterostructures of in situ-grown layered COF on Ti3C2 MXene nanosheets for lithium-sulfur batteries. Nano Today 2020;35:100991.
194. Liang Y, Xia M, Zhao Y, et al. Functionalized triazine-based covalent organic frameworks containing quinoline via aza-Diels-Alder reaction for enhanced lithium-sulfur batteries performance. J Colloid Interface Sci 2022;608:652-61.
195. Gao G, Jia Y, Gao H, et al. New covalent triazine framework rich in nitrogen and oxygen as a host material for lithium-sulfur batteries. ACS Appl Mater Interfaces 2021;13:50258-69.
196. Fan X, Chen S, Gong W, et al. A conjugated porous polymer complexed with a single-atom cobalt catalyst as an electrocatalytic sulfur host for enhancing cathode reaction kinetics. Energy Stor Mater 2021;41:14-23.
197. Wu C, Yan X, Yu H, et al. Engineering strong electronegative nitrogen-rich porous organic polymer for practical durable lithium-sulfur battery. J Power Sources 2022;551:232212.
198. Senthil C, Jung HY. Molecular polysulfide-scavenging sulfurized-triazine polymer enable high energy density Li-S battery under lean electrolyte. Energy Stor Mater 2023;55:225-35.
199. Yang Z, Hu Z, Yan G, et al. Multi-function hollow nanorod as an efficient sulfur host accelerates sulfur redox reactions for high-performance Li-S batteries. J Colloid Interface Sci 2023;629:65-75.
200. Cao Y, Jia Y, Meng X, et al. Covalently grafting conjugated porous polymers to MXene offers a two-dimensional sandwich-structured electrocatalytic sulfur host for lithium-sulfur batteries. Chem Eng J 2022;446:137365.
201. Yan R, Mishra B, Traxler M, et al. A thiazole-linked covalent organic framework for lithium-sulphur batteries. Angew Chem Int Ed 2023;62:e202302276.
202. Mahato M, Nam S, Lee MJ, Koratkar N, Oh IK. Physicochemically interlocked sulfur covalent triazine framework for lithium-sulfur batteries with exceptional longevity. Small 2023;19:e2301847.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.