REFERENCES
1. Seddon N. Harnessing the potential of nature-based solutions for mitigating and adapting to climate change. Science 2022;376:1410-6.
2. Wang W, Zeng C, Tsubaki N. Recent advancements and perspectives of the CO2 hydrogenation reaction. Green Carbon 2023;1:133-45.
3. Hepburn C, Adlen E, Beddington J, et al. The technological and economic prospects for CO2 utilization and removal. Nature 2019;575:87-97.
4. Kamkeng ADN, Wang M, Hu J, Du W, Qian F. Transformation technologies for CO2 utilisation: current status, challenges and future prospects. Chem Eng J 2021;409:128138.
5. Mao J, Wang Y, Zhang B, et al. Advances in electrocarboxylation reactions with CO2. Green Carbon 2024;2:45-56.
6. Li C, Ji Y, Wang Y, et al. Applications of metal-organic frameworks and their derivatives in electrochemical CO2 reduction. Nanomicro Lett 2023;15:113.
7. Younus HA, Ahmad N, Ni W, et al. Molecular catalysts for CO2 electroreduction: progress and prospects with pincer type complexes. Coord Chem Rev 2023;493:215318.
8. Wang D, Mao J, Zhang C, et al. Modulating microenvironments to enhance CO2 electroreduction performance. eScience 2023;3:100119.
9. Song D, Lian Y, Wang M, et al. Electrochemical CO2 reduction catalyzed by organic/inorganic hybrids. eScience 2023;3:100097.
11. Carrilho RMB, Calvete MJF, Mikle G, Kollár L, Pereira MM. Carbon monoxide as C1 building block in fine chemical synthesis. Chin J Chem 2024;42:199-221.
12. Wu X, Lang J, Sun Z, Jin F, Hu YH. Photocatalytic conversion of carbon monoxide: from pollutant removal to fuel production. Appl Catal B Environ 2021;295:120312.
13. Gao D, Zhou H, Cai F, Wang J, Wang G, Bao X. Pd-containing nanostructures for electrochemical CO2 reduction reaction. ACS Catal 2018;8:1510-9.
14. Tan X, Yu C, Song X, et al. Robust O-Pd-Cl catalyst-electrolyte interfaces enhance CO tolerance of Pd/C catalyst for stable CO2 electroreduction. Nano Energy 2022;104:107957.
15. Li J, Zhang B, Dong B, Feng L. MOF-derived transition metal-based catalysts for the electrochemical reduction of CO2 to CO: a mini review. Chem Commun 2023;59:3523-35.
16. Bikbaeva V, Nesterenko N, García-moncada N, Valtchev V. Co-promoted Mo-carbide catalytic system for sustainable manufacturing of chemicals via co-processing of CO2 with ethane. Green Carbon 2023;1:94-103.
17. Li H, Gan K, Li R, et al. Highly dispersed NiO clusters induced electron delocalization of Ni-N-C catalysts for enhanced CO2 electroreduction. Adv Funct Mater 2023;33:2208622.
18. Mao Y, Jiang Y, Gou Q, et al. Indium-activated bismuth-based catalysts for efficient electrocatalytic synthesis of urea. Appl Catal B Environ 2024;340:123189.
19. Deng C, Qi C, Wu X, Jing G, Zhao H. Unveiling the relationship between structural evaluation and catalytic performance of InOOH during electroreduction of CO2 to formate. Green Carbon 2024;2:124-30.
20. Liang S, Huang L, Gao Y, Wang Q, Liu B. Electrochemical reduction of CO2 to CO over transition metal/N-doped carbon catalysts: the active sites and reaction mechanism. Adv Sci 2021;8:e2102886.
21. Jia C, Ching K, Kumar PV, et al. Vitamin B12 on graphene for highly efficient CO2 electroreduction. ACS Appl Mater Interfaces 2020;12:41288-93.
22. Wang SM, Yuan X, Zhou S, et al. Single-atomic-Ni electrocatalyst derived from phthalocyanine-modified MOF for convoying CO2 intelligent utilization. Energy Mater 2024;4:400032.
23. Zhang Z, Yu L, Tu Y, et al. Unveiling the active site of metal-free nitrogen-doped carbon for electrocatalytic carbon dioxide reduction. Cell Rep Phys Sci 2020;1:100145.
24. Zhang W, Jia B, Liu X, Ma T. Surface and interface chemistry in metal-free electrocatalysts for electrochemical CO2 reduction. SmartMat 2022;3:5-34.
25. Yadav RM, Li Z, Zhang T, et al. Amine-functionalized carbon nanodot electrocatalysts converting carbon dioxide to methane. Adv Mater 2022;34:e2105690.
26. Dong Y, Zhang Q, Tian Z, et al. Ammonia thermal treatment toward topological defects in porous carbon for enhanced carbon dioxide electroreduction. Adv Mater 2020;32:e2001300.
27. Li J, Zan WY, Kang H, et al. Graphitic-N highly doped graphene-like carbon: a superior metal-free catalyst for efficient reduction of CO2. Appl Catal B Environ 2021;298:120510.
28. Li R, Liu F, Zhang Y, Guo M, Liu D. Nitrogen, sulfur co-doped hierarchically porous carbon as a metal-free electrocatalyst for oxygen reduction and carbon dioxide reduction reaction. ACS Appl Mater Interfaces 2020;12:44578-87.
29. Yang F, Liang C, Yu H, et al. Phosphorus-doped graphene aerogel as self-supported electrocatalyst for CO2-to-ethanol conversion. Adv Sci 2022;9:e2202006.
30. Sreekanth N, Nazrulla MA, Vineesh TV, Sailaja K, Phani KL. Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate. Chem Commun 2015;51:16061-4.
31. Zhang B, Zhang J, Zhang F, et al. Selenium-doped hierarchically porous carbon nanosheets as an efficient metal-free electrocatalyst for CO2 reduction. Adv Funct Mater 2020;30:1906194.
32. Sun Y, Zhao K, Deng X, Zhang M, Wang X, Wang W. Metal-free Se-based tetra-doped carbon catalyst for high-selective electro-reduction of CO2 into CO. J Environ Chem Eng 2023;11:110435.
33. Fu GE, Yang H, Zhao W, Samorì P, Zhang T. 2D conjugated polymer thin films for organic electronics: opportunities and challenges. Adv Mater 2024;29:e2311541.
34. Yao L, Ma C, Sun L, et al. Highly crystalline polyimide covalent organic framework as dual-active-center cathode for high-performance lithium-ion batteries. J Am Chem Soc 2022;144:23534-42.
35. Gu S, Hao R, Chen J, et al. A star-shaped polyimide covalent organic framework for high-voltage lithium-ion batteries. Mater Chem Front 2022;6:2545-50.
36. Wang J, Liu H, Du C, et al. Conjugated diketone-linked polyimide cathode material for organic lithium-ion batteries. Chem Eng J 2022;444:136598.
37. Wang Y, Liu Z, Wang C, et al. π-conjugated polyimide-based organic cathodes with extremely-long cycling life for rechargeable magnesium batteries. Energy Stor Mater 2020;26:494-502.
38. Fang Q, Zhuang Z, Gu S, et al. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nat Commun 2014;5:4503.
39. Zhang Y, Huang Z, Ruan B, et al. Design and synthesis of polyimide covalent organic frameworks. Macromol Rapid Commun 2020;41:e2000402.
40. Han B, Ding X, Yu B, et al. Two-dimensional covalent organic frameworks with Cobalt(II)-Phthalocyanine sites for efficient electrocatalytic carbon dioxide reduction. J Am Chem Soc 2021;143:7104-13.
41. Han B, Jin Y, Chen B, et al. Maximizing electroactive sites in a three-dimensional covalent organic framework for significantly improved carbon dioxide reduction electrocatalysis. Angew Chem Int Ed 2022;61:e202114244.
42. Feng DM, Zhu YP, Chen P, Ma TY. Recent advances in transition-metal-mediated electrocatalytic CO2 reduction: from homogeneous to heterogeneous systems. Catalysts 2017;7:373.
43. Feng D, Zhou L, White TJ, Cheetham AK, Ma T, Wei F. Nanoengineering metal-organic frameworks and derivatives for electrosynthesis of ammonia. Nanomicro Lett 2023;15:203.
44. Duan H, Li K, Xie M, et al. Scalable synthesis of ultrathin polyimide covalent organic framework nanosheets for high-performance lithium-sulfur batteries. J Am Chem Soc 2021;143:19446-53.
45. Hiragond C, Kim H, Lee J, Sorcar S, Erkey C, In S. Electrochemical CO2 reduction to CO catalyzed by 2D nanostructures. Catalysts 2020;10:98.
46. Wang T, Xue R, Chen H, et al. Preparation of two new polyimide bond linked porous covalent organic frameworks and their fluorescence sensing application for sensitive and selective determination of Fe3+. New J Chem 2017;41:14272-8.
47. Han Y, Zhang M, Zhang YQ, Zhang ZH. Copper immobilized at a covalent organic framework: an efficient and recyclable heterogeneous catalyst for the Chan-Lam coupling reaction of aryl boronic acids and amines. Green Chem 2018;20:4891-900.
48. Liebl MR, Senker J. Microporous functionalized triazine-based polyimides with high CO2 capture capacity. Chem Mater 2013;25:970-80.