REFERENCES

1. Edgington, J.; Vispute, S.; Li, R.; Deberghes, A.; Seitz, L. C. Quantification of electrochemically accessible iridium oxide surface area with mercury underpotential deposition. Sci. Adv. 2024, 10, eadp8911.

2. Cao, X.; Huo, J.; Li, L.; et al. Recent advances in engineered Ru-based electrocatalysts for the hydrogen/oxygen conversion reactions. Adv. Energy. Mater. 2022, 12, 2202119.

3. Guo, J.; Huo, J.; Liu, Y.; et al. Nitrogen-doped porous carbon supported nonprecious metal single-atom electrocatalysts: from synthesis to application. Small. Methods. 2019, 3, 1900159.

4. Pei, Z.; Tan, H.; Gu, J.; et al. A polymeric hydrogel electrocatalyst for direct water oxidation. Nat. Commun. 2023, 14, 818.

5. Chen, X.; Zhang, Z.; Chen, Y.; et al. Research advances in earth-abundant-element-based electrocatalysts for oxygen evolution reaction and oxygen reduction reaction. Energy. Mater. 2023, 3, 300031.

6. Zhao, Y.; Shen, Z.; Huo, J.; et al. Epoxy-rich Fe single atom sites boost oxygen reduction electrocatalysis. Angew. Chem. Int. Ed. 2023, 62, e202308349.

7. Wang, P.; Lin, Y.; Xu, Q.; et al. Acid-corrosion-induced hollow-structured NiFe-layered double hydroxide electrocatalysts for efficient water oxidation. ACS. Appl. Energy. Mater. 2021, 4, 9022-31.

8. Chen, X.; Liu, J.; Yuan, T.; et al. Recent advances in earth-abundant first-row transition metal (Fe, Co and Ni)-based electrocatalysts for the oxygen evolution reaction. Energy. Mater. 2022, 2, 200028.

9. Zhao, J.; Guo, Y.; Zhang, Z.; et al. Out-of-plane coordination of iridium single atoms with organic molecules and cobalt-iron hydroxides to boost oxygen evolution reaction. Nat. Nanotechnol. 2025, 20, 57-66.

10. He, B.; Deng, Q.; Wang, Y.; et al. Modification of surface electronic structure via Ru-doping: porous Ru-CoFeP nanocubes to boost the oxygen evolution reaction. J. Power. Sources. 2022, 537, 231506.

11. Lei, Y.; Zhang, L.; Xu, W.; et al. Carbon-supported high-entropy Co-Zn-Cd-Cu-Mn sulfide nanoarrays promise high-performance overall water splitting. Nano. Res. 2022, 15, 6054-61.

12. Xu, H.; Yang, J.; Ge, R.; et al. Carbon-based bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions: optimization strategies and mechanistic analysis. J. Energy. Chem. 2022, 71, 234-65.

13. Luo, Y.; Wei, L.; Geng, H.; Zhang, Y.; Yang, Y.; Li, C. C. Amorphous bimetallic oxides Fe-V-O with tunable compositions toward rechargeable Zn-Ion batteries with excellent low-temperature performance. ACS. Appl. Mater. Interfaces. 2020, 12, 11753-60.

14. Wang, Y.; Zhang, L.; Meng, X.; et al. Scalable processing hollow tungsten carbide spherical superstructure as an enhanced electrocatalyst for hydrogen evolution reaction over a wide pH range. Electrochim. Acta. 2019, 319, 775-82.

15. Gultom, N. S.; Abdullah, H.; Hsu, C.; Kuo, D. Activating nickel iron layer double hydroxide for alkaline hydrogen evolution reaction and overall water splitting by electrodepositing nickel hydroxide. Chem. Eng. J. 2021, 419, 129608.

16. Hao, H.; Li, Y.; Wu, Y.; et al. In-situ probing the rapid reconstruction of FeOOH-decorated NiMoO4 nanowires with boosted oxygen evolution activity. Mater. Today. Energy. 2022, 23, 100887.

17. Xiao, Y.; Chen, X.; Li, T.; et al. Mo-doped cobalt hydroxide nanosheets coupled with cobalt phosphide nanoarrays as bifunctional catalyst for efficient and high-stability overall water splitting. Int. J. Hydrogen. Energy. 2022, 47, 9915-24.

18. Jin, Y.; Huang, S.; Yue, X.; Du, H.; Shen, P. K. Mo- and Fe-modified Ni(OH)2/NiOOH nanosheets as highly active and stable electrocatalysts for oxygen evolution reaction. ACS. Catal. 2018, 8, 2359-63.

19. Xiong, S.; Wang, L.; Chai, H.; Xu, Y.; Jiao, Y.; Chen, J. Molybdenum doped induced amorphous phase in cobalt acid nickel for supercapacitor and oxygen evolution reaction. J. Colloid. Interface. Sci. 2022, 606, 1695-706.

20. Su, X.; Wang, Y.; Zhou, J.; Gu, S.; Li, J.; Zhang, S. Operando spectroscopic identification of active sites in nife prussian blue analogues as electrocatalysts: activation of oxygen atoms for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 11286-92.

21. Shi, Z.; Yu, Z.; Guo, J.; et al. Lattice distortion of crystalline-amorphous nickel molybdenum sulfide nanosheets for high-efficiency overall water splitting: libraries of lone pairs of electrons and in situ surface reconstitution. Nanoscale 2022, 14, 1370-9.

22. Chen, Z. J.; Zhang, T.; Gao, X. Y.; et al. Engineering microdomains of oxides in high-entropy alloy electrodes toward efficient oxygen evolution. Adv. Mater. 2021, 33, 2101845.

23. Qiu, Y.; Jia, Q.; Yan, S.; Liu, B.; Liu, J.; Ji, X. Favorable amorphous-crystalline iron oxyhydroxide phase boundaries for boosted alkaline water oxidation. ChemSusChem 2020, 13, 4911-5.

24. Sheng, H.; Qu, H.; Zeng, B.; et al. Enriched Fe doped on amorphous shell enable crystalline@amorphous core-shell nanorod highly efficient electrochemical water oxidation. Small 2023, 19, 2300876.

25. Li, D.; Qin, Y.; Liu, J.; et al. Dense crystalline-amorphous interfacial sites for enhanced electrocatalytic oxygen evolution. Adv. Funct. Mater. 2022, 32, 2107056.

26. Zhang, B.; Zheng, X.; Voznyy, O.; et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333-7.

27. Zhang, Y.; Gao, F.; Wang, D.; et al. Amorphous/crystalline heterostructure transition-metal-based catalysts for high-performance water splitting. Coord. Chem. Rev. 2023, 475, 214916.

28. Lyons, M. E.; Floquet, S. Mechanism of oxygen reactions at porous oxideelectrodes. Part 2-oxygen evolution at RuO2, IrO2 and IrxRu1-xO2 electrodes in aqueous acid and alkaline solution. Phys. Chem. Chem. Phys. 2011, 13, 5314-35.

29. Fan, X.; Liu, Y.; Chen, S.; et al. Defect-enriched iron fluoride-oxide nanoporous thin films bifunctional catalyst for water splitting. Nat. Commun. 2018, 9, 1809.

30. Luo, M.; Zhao, Z.; Zhang, Y.; et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81-5.

31. Li, S.; Bai, L.; Shi, H.; et al. Mo-doped CoP nanosheets as high-performance electrocatalyst for HER and OER. Ionics 2021, 27, 3109-18.

32. Liu, Y.; Liu, P.; Men, Y. L.; et al. Incorporating MoO3 patches into a Ni oxyhydroxide nanosheet boosts the electrocatalytic oxygen evolution reaction. ACS. Appl. Mater. Interfaces. 2021, 13, 26064-73.

33. Yu, L.; Wu, L.; Mcelhenny, B.; et al. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy. Environ. Sci. 2020, 13, 3439-46.

34. Wang, H.; Qi, J.; Yang, N.; et al. Dual-defects adjusted crystal-field splitting of LaCo1-xNixO3-δ hollow multishelled structures for efficient oxygen evolution. Angew. Chem. Int. Ed. 2020, 59, 19691-5.

35. Pan, Y.; Gao, J.; Lv, E.; et al. Integration of alloy segregation and surface Co-O hybridization in carbon-encapsulated CoNiPt alloy catalyst for superior alkaline hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2303833.

36. Jeghan, S. M. N.; Kim, J.; Lee, G. Hierarchically designed CoMo marigold flower-like 3D nano-heterostructure as an efficient electrocatalyst for oxygen and hydrogen evolution reactions. Appl. Surf. Sci. 2021, 546, 149072.

37. Zhang, H.; Xia, B.; Wang, P.; et al. From waste to waste treatment: mesoporous magnetic NiFe2O4/ZnCuCr-layered double hydroxide composite for wastewater treatment. J. Alloys. Compd. 2020, 819, 153053.

38. He, R.; Li, M.; Qiao, W.; Feng, L. Fe doped Mo/Te nanorods with improved stability for oxygen evolution reaction. Chem. Eng. J. 2021, 423, 130168.

39. Huang, Y.; Wu, Y.; Zhang, Z.; Yang, L.; Zang, Q. Rapid electrodeposited of self-supporting Ni-Fe-Mo film on Ni foam as affordable electrocatalysts for oxygen evolution reaction. Electrochim. Acta. 2021, 390, 138754.

40. Wei, Y.; Li, W.; Li, D.; Yi, L.; Hu, W. Amorphous-crystalline cobalt-molybdenum bimetallic phosphide heterostructured nanosheets as Janus electrocatalyst for efficient water splitting. Int. J. Hydrogen. Energy. 2022, 47, 7783-92.

41. Ali, U.; Sohail, K.; Liu, Y.; Yu, X.; Xing, S. Molybdenum and phosphorous dual-doped, transition-metal-based, free-standing electrode for overall water splitting. ChemElectroChem 2021, 8, 1612-20.

42. Ma, Y.; Dong, X.; Wang, Y.; Xia, Y. Decoupling hydrogen and oxygen production in acidic water electrolysis using a polytriphenylamine-based battery electrode. Angew. Chem. Int. Ed. 2018, 57, 2904-8.

43. Zhang, Z.; Jia, C.; Ma, P.; et al. Distance effect of single atoms on stability of cobalt oxide catalysts for acidic oxygen evolution. Nat. Commun. 2024, 15, 1767.

44. Zhang, M.; Liu, Y.; Liu, B.; Chen, Z.; Xu, H.; Yan, K. Trimetallic NiCoFe-layered double hydroxides nanosheets efficient for oxygen evolution and highly selective oxidation of biomass-derived 5-hydroxymethylfurfural. ACS. Catal. 2020, 10, 5179-89.

45. Ye, C.; Wang, M. Q.; Bao, S. J.; Ye, C. Micropore-boosted layered double hydroxide catalysts: EIS analysis in structure and activity for effective oxygen evolution reactions. ACS. Appl. Mater. Interfaces. 2019, 11, 30887-93.

46. Sun, S.; Li, H.; Xu, Z. J. Impact of surface area in evaluation of catalyst activity. Joule 2018, 2, 1024-7.

47. Wei, C.; Xu, Z. J. The Comprehensive Understanding of $$ ^{ 10 \ \mathrm{mAcm}{ }_{geo}^{-2}} $$ as an evaluation parameter for electrochemical water splitting. Small. Methods. 2018, 2, 1800168.

48. Yang, H.; Wang, C.; Zhang, Y.; Wang, Q. Green synthesis of NiFe LDH/Ni foam at room temperature for highly efficient electrocatalytic oxygen evolution reaction. Sci. China. Mater. 2019, 62, 681-9.

49. Xie, Y.; Luo, F.; Yang, Z. Acidic oxygen evolution reaction via lattice oxygen oxidation mechanism: progress and challenges. Energy. Mater. 2025, 5, 500026.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/