REFERENCES

1. Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457-61.

2. Beretta, D.; Neophytou, N.; Hodges, J. M.; et al. Thermoelectrics: from history, a window to the future. Mater. Sci. Eng. R. Rep. 2019, 138, 100501.

3. DiSalvo, F. J. Thermoelectric cooling and power generation. Science 1999, 285, 703-6.

4. Gorai, P.; Stevanović, V.; Toberer, E. S. Computationally guided discovery of thermoelectric materials. Nat. Rev. Mater. 2017, 2, 201753.

5. Wang, T.; Zhang, C.; Snoussi, H.; Zhang, G. Machine learning approaches for thermoelectric materials research. Adv. Funct. Mater. 2020, 30, 1906041.

6. Chen, C.; Zuo, Y.; Ye, W.; Li, X.; Deng, Z.; Ong, S. P. A critical review of machine learning of energy materials. Adv. Energy. Mater. 2020, 10, 1903242.

7. Recatala-Gomez, J.; Suwardi, A.; Nandhakumar, I.; Abutaha, A.; Hippalgaonkar, K. Toward accelerated thermoelectric materials and process discovery. ACS. Appl. Energy. Mater. 2020, 3, 2240-57.

8. Wang, X.; Sheng, Y.; Ning, J.; et al. A critical review of machine learning techniques on thermoelectric materials. J. Phys. Chem. Lett. 2023, 14, 1808-22.

9. Chen, W. H.; Carrera, U. M.; Kwon, E. E.; et al. A comprehensive review of thermoelectric generation optimization by statistical approach: Taguchi method, analysis of variance (ANOVA), and response surface methodology (RSM). Renew. Sustain. Energy. Rev. 2022, 169, 112917.

10. Kucova, T.; Prauzek, M.; Konecny, J.; Andriukaitis, D.; Zilys, M.; Martinek, R. Thermoelectric energy harvesting for internet of things devices using machine learning: a review. CAAI. Trans. on. Intell. Technol. 2023, 8, 680-700.

11. Song, K.; Tanvir, A. N. M.; Bappy, M. O.; Zhang, Y. New directions for thermoelectrics: a roadmap from high-throughput materials discovery to advanced device manufacturing. Small. Sci. 2025, 5, 2300359.

12. Deng, T.; Qiu, P.; Yin, T.; et al. High-throughput strategies in the discovery of thermoelectric materials. Adv. Mater. 2024, 36, e2311278.

13. Chen, G.; Dresselhaus, M. S.; Dresselhaus, G.; Fleurial, J.; Caillat, T. Recent developments in thermoelectric materials. Int. Mater. Rev. 2003, 48, 45-66.

14. Gayner, C.; Kar, K. K. Recent advances in thermoelectric materials. Prog. Mater. Sci. 2016, 83, 330-82.

15. He, J.; Tritt, T. M. Advances in thermoelectric materials research: looking back and moving forward. Science 2017, 357, eaak9997.

16. Yang, L.; Chen, Z. G.; Dargusch, M. S.; Zou, J. High performance thermoelectric materials: progress and their applications. Adv. Energy. Mater. 2018, 8, 1701797.

17. Hasan, M. N.; Wahid, H.; Nayan, N.; Mohamed, A. M. S. Inorganic thermoelectric materials: a review. Int. J. Energy. Res. 2020, 44, 6170-222.

18. Shi, X. L.; Zou, J.; Chen, Z. G. Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 2020, 120, 7399-515.

19. Wei, J.; Yang, L.; Ma, Z.; et al. Review of current high-ZT thermoelectric materials. J. Mater. Sci. 2020, 55, 12642-704.

20. Tan, G.; Zhao, L. D.; Kanatzidis, M. G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 2016, 116, 12123-49.

21. Soleimani, Z.; Zoras, S.; Ceranic, B.; Shahzad, S.; Cui, Y. A review on recent developments of thermoelectric materials for room-temperature applications. Sustain. Energy. Technol. Assess. 2020, 37, 100604.

22. Jarman, J.; Khalil, E. E.; Khalaf, E. Energy analyses of thermoelectric renewable energy sources. Open. J. Energy. Effic. 2013, 2, 143-53.

23. Ryu, B.; Chung, J.; Kumagai, M.; et al. Best thermoelectric efficiency of ever-explored materials. Iscience 2023, 26, 106494.

24. Gaultois, M. W.; Sparks, T. D.; Borg, C. K. H.; Seshadri, R.; Bonificio, W. D.; Clarke, D. R. Data-driven review of thermoelectric materials: performance and resource considerations. Chem. Mater. 2013, 25, 2911-20.

25. Wang, S.; Zuo, G.; Kim, J.; Sirringhaus, H. Progress of conjugated polymers as emerging thermoelectric materials. Prog. Polym. Sci. 2022, 129, 101548.

26. Qin, Y.; Zhang, Q.; Chen, G. Organic borate doped carbon nanotube for enhancement of thermoelectric performance. Carbon 2021, 182, 742-8.

27. Lindorf, M.; Mazzio, K. A.; Pflaum, J.; Nielsch, K.; Brütting, W.; Albrecht, M. Organic-based thermoelectrics. J. Mater. Chem. A. 2020, 8, 7495-507.

28. Zhang, Y.; Wang, W.; Zhang, F.; et al. Soft organic thermoelectric materials: principles, current state of the art and applications. Small 2022, 18, e2104922.

29. Deng, L.; Liu, Y.; Zhang, Y.; Wang, S.; Gao, P. Organic thermoelectric materials: niche harvester of thermal energy. Adv. Funct. Mater. 2023, 33, 2210770.

30. Jin, H.; Li, J.; Iocozzia, J.; et al. Hybrid organic-inorganic thermoelectric materials and devices. Angew. Chem. Int. Ed. 2019, 58, 15206-26.

31. Selvaratnam, B.; Koodali, R. T. Machine learning in experimental materials chemistry. Catal. Today. 2021, 371, 77-84.

32. Williamson, E. M.; Brutchey, R. L. Using data-driven learning to predict and control the outcomes of inorganic materials synthesis. Inorg. Chem. 2023, 62, 16251-62.

33. Baum, F.; Pretto, T.; Köche, A.; Santos, M. J. L. Machine learning tools to predict hot injection syntheses outcomes for II-VI and IV-VI quantum dots. J. Phys. Chem. C. 2020, 124, 24298-305.

34. Kyratsi, T.; Ioannou, M. Thermoelectric properties of hot-pressed β-K2Bi8Se13-xSx materials. J. Electron. Mater. 2013, 42, 1604-11.

35. Kanatzia, A.; Papageorgiou, C.; Lioutas, C.; Kyratsi, T. Design of ball-milling experiments on Bi2Te3 thermoelectric material. J. Electron. Mater. 2013, 42, 1652-60.

36. Nuthongkum, P.; Sakulkalavek, A.; Sakdanuphab, R. RSM base study of the effect of argon gas flow rate and annealing temperature on the [Bi]:[Te] ratio and thermoelectric properties of flexible Bi-Te thin film. J. Electron. Mater. 2017, 46, 2900-7.

37. Khumtong, T.; Sakulkalavek, A.; Sakdanuphab, R. Empirical modelling and optimization of pre-heat temperature and Ar flow rate using response surface methodology for stoichiometric Sb2Te3 thin films prepared by RF magnetron sputtering. J. Alloys. Compd. 2017, 715, 65-72.

38. Zhang, Y.; Zhang, Q.; Chen, G. Carbon and carbon composites for thermoelectric applications. Carbon. Energy. 2020, 2, 408-36.

39. Jagadish, P. R.; Khalid, M.; Amin, N.; Li, L. P.; Chan, A. Process optimisation for n-type Bi2Te3 films electrodeposited on flexible recycled carbon fibre using response surface methodology. J. Mater. Sci. 2017, 52, 11467-81.

40. Sam, S.; Sreypich, S.; Abad, A.; Gan Lim, L.; Santos, G. N. Fabrication and characterization of PbSnTe crystals for thermoelectric applications. J. Comput. Innov. Eng. Appl. 2022, 2, 1-2. Available from: https://www.researchgate.net/publication/360112987_Fabrication_and_Characterization_of_PbSnTe_Crystals_for_Thermoelectric_Applications?enrichId=rgreq-db992f1349b27a902702d24605a71362-XXX&enrichSource=Y292ZXJQYWdlOzM2MDExMjk4NztBUzoxMTQ3Njg0MTMxOTk5NzQ5QDE2NTA2NDA2MjgzNzE%3D&el=1_x_2&_esc=publicationCoverPdf [Last accessed on 4 Jun 2025]

41. Lange, R. G.; Carroll, W. P. Review of recent advances of radioisotope power systems. Energy. Convers. Manag. 2008, 49, 393-401.

42. Basu, R.; Bhattacharya, S.; Bhatt, R.; et al. Improved thermoelectric performance of hot pressed nanostructured n-type SiGe bulk alloys. J. Mater. Chem. A. 2014, 2, 6922.

43. Ahmad, S.; Singh, A.; Basu, R.; et al. Optimization of thermoelectric properties of mechanically alloyed p-type SiGe by mathematical modelling. J. Electron. Mater. 2019, 48, 649-55.

44. Karthikeyan, V.; Surjadi, J. U.; Li, X.; et al. Three dimensional architected thermoelectric devices with high toughness and power conversion efficiency. Nat. Commun. 2023, 14, 2069.

45. Maduabuchi, C. Thermo-mechanical optimization of thermoelectric generators using deep learning artificial intelligence algorithms fed with verified finite element simulation data. Appl. Energy. 2022, 315, 118943.

46. Maduabuchi, C.; Eneh, C.; Alrobaian, A. A.; Alkhedher, M. Deep neural networks for quick and precise geometry optimization of segmented thermoelectric generators. Energy 2023, 263, 125889.

47. Ameenuddin Irfan, S.; Irshad, K.; Algahtani, A.; et al. Machine learning-based modeling of thermoelectric materials and air-cooling system developed for a humid environment. Mater. Express. 2021, 11, 153-65.

48. Gulevich, D.; Nabiev, I.; Samokhvalov, P. Machine learning-assisted colloidal synthesis: a review. Mater. Today. Chem. 2024, 35, 101837.

49. Iwasaki, Y.; Takeuchi, I.; Stanev, V.; et al. Machine-learning guided discovery of a new thermoelectric material. Sci. Rep. 2019, 9, 2751.

50. Tewari, A.; Dixit, S.; Sahni, N.; Bordas, S. P. A. Machine learning approaches to identify and design low thermal conductivity oxides for thermoelectric applications. Data-Centric. Eng. 2020, 1, e8.

51. Juneja, R.; Yumnam, G.; Satsangi, S.; Singh, A. K. Coupling the high-throughput property map to machine learning for predicting lattice thermal conductivity. Chem. Mater. 2019, 31, 5145-51.

52. Juneja, R.; Singh, A. K. Unraveling the role of bonding chemistry in connecting electronic and thermal transport by machine learning. J. Mater. Chem. A. 2020, 8, 8716-21.

53. Juneja, R.; Singh, A. K. Guided patchwork kriging to develop highly transferable thermal conductivity prediction models. J. Phys. Mater. 2020, 3, 2.

54. Li, W.; Liu, M. Interpretable machine learning workflow for evaluating and analyzing the performance of high-entropy GeTe-based thermoelectric materials. ACS. Appl. Electron. Mater. 2023, 5, 4523-33.

55. Zhang, Y.; Ling, C. A strategy to apply machine learning to small datasets in materials science. NPJ. Comput. Mater. 2018, 4, 81.

56. He, Z.; Peng, J.; Lei, C.; Xie, S.; Zou, D.; Liu, Y. Prediction of superior thermoelectric performance in unexplored doped-BiCuSeO via machine learning. Mater. Des. 2023, 229, 111868.

57. Minhas, H.; Jena, M. K.; Sharma, R. K.; Pathak, B. Machine learning-driven inverse design and role of dopant for tuning thermoelectric efficiency. ACS. Appl. Electron. Mater. 2024, 6, 5815-26.

58. Parse, N.; Pongkitivanichkul, C.; Pinitsoontorn, S. Machine learning approach for maximizing thermoelectric properties of BiCuSeO and discovering new doping element. Energies 2022, 15, 779.

59. Tang, B.; Lu, Y.; Zhou, J.; et al. Machine learning-guided synthesis of advanced inorganic materials. Mater. Today. 2020, 41, 72-80.

60. Wang, Z.; Adachi, Y.; Chen, Z. C. Processing optimization and property predictions of hot-extruded Bi-Te-Se thermoelectric materials via machine learning. Adv. Theory. Simul. 2020, 3, 1900197.

61. Song, K.; Xu, G.; Tanvir, A. N. M.; et al. Machine learning-assisted 3D printing of thermoelectric materials of ultrahigh performances at room temperature. J. Mater. Chem. A. 2024, 12, 21243-51.

62. Alrebdi, T.; Wudil, Y.; Ahmad, U.; Yakasai, F.; Mohammed, J.; Kallas, F. Predicting the thermal conductivity of Bi2Te3-based thermoelectric energy materials: a machine learning approach. Int. J. Therm. Sci. 2022, 181, 107784.

63. Headley, C. V.; Herrera del Valle, R. J.; Ma, J.; et al. The development of an augmented machine learning approach for the additive manufacturing of thermoelectric materials. J. Manuf. Processes. 2024, 116, 165-75.

64. Hou, Z.; Takagiwa, Y.; Shinohara, Y.; Xu, Y.; Tsuda, K. Machine-learning-assisted development and theoretical consideration for the Al2Fe3Si3 thermoelectric material. ACS. Appl. Mater. Interfaces. 2019, 11, 11545-54.

65. Na, G. S. Artificial intelligence for learning material synthesis processes of thermoelectric materials. Chem. Mater. 2023, 35, 8272-80.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/