REFERENCES
1. He, Z.; Zhang, C.; Zhu, Y.; Wei, F. The acupuncture effect of carbon nanotubes induced by the volume expansion of silicon-based anodes. Energy. Environ. Sci. 2024, 17, 3358-64.
2. Liu, J.; Huang, L.; Wang, H.; et al. The origin, characterization, and precise design and regulation of diverse hard carbon structures for targeted applications in lithium-/sodium-/potassium-ion batteries. Electrochem. Energy. Rev. 2024, 7, 34.
3. Zhang, P.; Wang, X.; Zhang, Y.; et al. Burgeoning silicon/MXene nanocomposites for lithium ion batteries: a review. Adv. Funct. Mater. 2024, 34, 2402307.
4. He, Z.; Zhang, C.; Zhu, Z.; Yu, Y.; Zheng, C.; Wei, F. Advances in carbon nanotubes and carbon coatings as conductive networks in silicon-based anodes. Adv. Funct. Mater. 2024, 34, 2408285.
5. Wang, L.; Han, J.; Kong, D.; Tao, Y.; Yang, Q. H. Enhanced roles of carbon architectures in high-performance lithium-ion batteries. Nano-Micro. Lett. 2019, 11, 5.
6. Yan, W.; Mu, Z.; Wang, Z.; et al. Hard-carbon-stabilized Li-Si anodes for high-performance all-solid-state Li-ion batteries. Nat. Energy. 2023, 8, 800-13.
7. Zhou, J.; Lu, Y.; Yang, L.; et al. Sustainable silicon anodes facilitated via a double-layer interface engineering: inner SiOx combined with outer nitrogen and boron co-doped carbon. Carbon. Energy. 2022, 4, 399-410.
8. Han, M.; Mu, Y.; Wei, L.; Zeng, L.; Zhao, T. Multilevel carbon architecture of subnanoscopic silicon for fast-charging high-energy-density lithium-ion batteries. Carbon. Energy. 2024, 6, e377.
9. Li, W.; Xu, Y.; Wang, G.; Xu, T.; Si, C. Design and functionalization of lignocellulose-derived silicon-carbon composites for rechargeable batteries. Adv. Energy. Mater. 2024, 14, 2403593.
10. Cheng, Z.; Jiang, H.; Zhang, X.; Cheng, F.; Wu, M.; Zhang, H. Fundamental understanding and facing challenges in structural design of porous Si-based anodes for lithium-ion batteries. Adv. Funct. Mater. 2023, 33, 2301109.
11. Zhao, H.; Li, J.; Zhao, Q.; et al. Si-based anodes: advances and challenges in Li-ion batteries for enhanced stability. Electrochem. Energy. Rev. 2024, 7, 11.
12. Zhang, Z.; Chen, Y.; Sun, S.; et al. Recent progress on three-dimensional nanoarchitecture anode materials for lithium/sodium storage. J. Mater. Sci. Technol. 2022, 119, 167-81.
13. Liu, J.; Di, Z.; Wan, Y.; et al. Sub-micron porous Si-C/graphite anode with interpenetrated 3D conductive networks towards high-performance lithium-ion batteries. J. Alloys. Compd. 2024, 983, 173930.
14. Wang, D.; Wang, Q.; Tan, M.; et al. Biomass CQDs derivate carbon as high-performance anode for K-ion battery. J. Alloys. Compd. 2022, 922, 166260.
15. Ha, T.; Reddy, B.; Ryu, H.; et al. A study on the electrochemical properties of silicon/carbon composite for lithium-ion battery. J. Energy. Storage. 2023, 63, 107045.
16. Yan, J.; Gao, C.; Qi, S.; et al. Encapsulation of nano-Si into MOF glass to enhance lithium-ion battery anode performances. Nano. Energy. 2022, 103, 107779.
17. Zhang, R.; Jia, F.; Sun, C.; et al. Enhanced lithium storage performance: dual-modified electrospun Si@MnO@CNFs composites for advanced anodes. ACS. Appl. Mater. Interfaces. 2024, 16, 38028-40.
18. Zeng, K.; Li, T.; Qin, X.; et al. A combination of hierarchical pore and buffering layer construction for ultrastable nanocluster Si/SiOx anode. Nano. Res. 2020, 13, 2987-93.
19. Tong, Y.; Wu, Y.; Liu, Z.; Yin, Y.; Sun, Y.; Li, H. Fabricating multi-porous carbon anode with remarkable initial coulombic efficiency and enhanced rate capability for sodium-ion batteries. Chin. Chem. Lett. 2023, 34, 107443.
20. Song, L.; Peng, C.; Yang, F.; Wang, L.; Jiang, Y.; Wang, Y. Surface spatial confinement effect on Mn-Co LDH@carbon dots for high-performance supercapacitors. ACS. Appl. Energy. Mater. 2021, 4, 4654-61.
21. Zuo, X.; Wang, X.; Xia, Y.; et al. Silicon/carbon lithium-ion battery anode with 3D hierarchical macro-/mesoporous silicon network: self-templating synthesis via magnesiothermic reduction of silica/carbon composite. J. Power. Sources. 2019, 412, 93-104.
22. Zhu, R.; Wang, Z.; Hu, X.; Liu, X.; Wang, H. Silicon in Hollow carbon nanospheres assembled microspheres cross-linked with n-doped carbon fibers toward a binder free, high performance, and flexible anode for lithium-ion batteries. Adv. Funct. Mater. 2021, 31, 2101487.
23. Fan, X.; Cai, T.; Wang, S.; Yang, Z.; Zhang, W. Carbon nanotube-reinforced dual carbon stress-buffering for highly stable silicon anode material in lithium-ion battery. Small 2023, 19, 2300431.
24. Wang, S.; Zhang, J.; Zhang, L.; et al. 3D self-supporting core-shell silicon-carbon nanofibers-based host enables confined Li+ deposition for lithium metal battery. Nano. Energy. 2024, 131, 110255.
25. He, Z.; Xiao, Z.; Yue, H.; et al. Single-walled carbon nanotube film as an efficient conductive network for Si-based anodes. Adv. Funct. Mater. 2023, 33, 2300094.
26. Araño, K. G.; Yang, G.; Armstrong, B. L.; et al. Carbon coating influence on the formation of percolating electrode networks for silicon anodes. ACS. Appl. Energy. Mater. 2023, 6, 11308-21.
27. Gao, Y.; Song, S.; He, F.; et al. Controllable synthesis of hollow dodecahedral Si@C core-shell structures for ultrastable lithium-ion batteries. Small 2024, 20, 2406489.
28. Niu, Y.; Wei, M.; Xi, F.; et al. Preparation of WSi@SiOx/Ti3C2 from photovoltaic silicon waste as high-performance anode materials for lithium-ion batteries. iScience 2024, 27, 110714.
29. Jiang, Y.; Liu, J. Definitions of pseudocapacitive materials: a brief review. Energy. Environ. Mater. 2019, 2, 30-7.
30. Huo, H.; Jiang, M.; Bai, Y.; et al. Chemo-mechanical failure mechanisms of the silicon anode in solid-state batteries. Nat. Mater. 2024, 23, 543-51.
31. Surace, Y.; Leanza, D.; Mirolo, M.; et al. Evidence for stepwise formation of solid electrolyte interphase in a Li-ion battery. Energy. Storage. Mater. 2022, 44, 156-67.
32. Zhang, R.; Yu, P.; Li, Z.; Shen, X.; Yu, Y.; Yu, J. Hierarchical porous structured Si/C anode material for lithium-ion batteries by dual encapsulating layers for enhanced lithium-ion and electron transports rates. Small 2025, 21, 2407276.
33. He, Y.; Jiang, L.; Chen, T.; et al. Progressive growth of the solid-electrolyte interphase towards the Si anode interior causes capacity fading. Nat. Nanotechnol. 2021, 16, 1113-20.
34. Wu, J.; Ihsan-ul-haq, M.; Chen, Y.; Kim, J. Understanding solid electrolyte interphases: advanced characterization techniques and theoretical simulations. Nano. Energy. 2021, 89, 106489.
35. Qian, G.; Li, Y.; Chen, H.; et al. Revealing the aging process of solid electrolyte interphase on SiOx anode. Nat. Commun. 2023, 14, 6048.
36. Geng, S.; Zhou, J.; Tan, B.; Zheng, B.; Zhang, K. Impact of thickness and charge rate on the electrochemical performance of Si-based electrodes. Cell. Rep. Phys. Sci. 2024, 5, 102305.
37. Gaberšček, M. Understanding Li-based battery materials via electrochemical impedance spectroscopy. Nat. Commun. 2021, 12, 6513.
38. Shi, Y.; Wan, J.; Li, J.; et al. Elucidating the interfacial evolution and anisotropic dynamics on silicon anodes in lithium-ion batteries. Nano. Energy. 2019, 61, 304-10.
39. Pan, K.; Zou, F.; Canova, M.; Zhu, Y.; Kim, J. Comprehensive electrochemical impedance spectroscopy study of Si-based anodes using distribution of relaxation times analysis. J. Power. Sources. 2020, 479, 229083.
40. Li, H.; Yao, B.; Li, M.; et al. Three-dimensional carbon nanotubes buffering interfacial stress of the silicon/carbon anodes for long-cycle lithium storage. ACS. Appl. Mater. Interfaces. 2024, 16, 53665-74.
41. Zhang, W.; Chen, R.; Dai, Y.; et al. Asymmetric acceptor-donor small organic molecule enabling versatile and highly-stable aqueous zinc batteries. Mater. Today. 2024, 78, 32-45.
42. Gao, J.; Zuo, S.; Liu, H.; et al. An interconnected and scalable hollow Si-C nanospheres/graphite composite for high-performance lithium-ion batteries. J. Colloid. Interface. Sci. 2022, 624, 555-63.
43. Di, F.; Wang, Z.; Ge, C.; et al. Hierarchical pomegranate-structure design enables stress management for volume release of Si anode. J. Mater. Sci. Technol. 2023, 157, 1-10.
44. Wang, V.; Xu, N.; Liu, J. C.; et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.
45. Kansara, S.; Kang, H.; Ryu, S.; Sun, H. H.; Hwang, J. Basic guidelines of first-principles calculations for suitable selection of electrochemical Li storage materials: a review. J. Mater. Chem. A. 2023, 11, 24482-518.
46. Marri, I.; Amato, M.; Bertocchi, M.; et al. Surface chemistry effects on work function, ionization potential and electronic affinity of Si(100), Ge(100) surfaces and SiGe heterostructures. Phys. Chem. Chem. Phys. 2020, 22, 25593-605.