REFERENCES
1. Lee, S.; Park, N.; Park, G.; et al. Doping strategy in developing Ni-rich cathodes for high-performance lithium-ion batteries. ACS. Energy. Lett. 2024, 9, 740-7.
2. Yang, J.; Liang, X.; Ryu, H.; Yoon, C. S.; Sun, Y. Ni-rich layered cathodes for lithium-ion batteries: from challenges to the future. Energy. Storage. Mater. 2023, 63, 102969.
3. Xia, S.; Cai, Y.; Yao, L.; et al. Nitrogen-rich two-dimensional π-conjugated porous covalent quinazoline polymer for lithium storage. Energy. Storage. Mater. 2022, 50, 225-33.
4. Xia, S.; Liu, T.; Huang, W.; et al. Extended π-conjugated N-containing heteroaromatic hexacarboxylate organic anode for high performance rechargeable batteries. J. Energy. Chem. 2020, 51, 303-11.
5. Sagar, R. U. R.; Rahman, M. M.; Cai, Q.; Liang, T.; Chen, Y. I. A comparative study on morphology dependent performance of neodymium - graphene as an anode material in lithium-ion batteries. J. Energy. Storage. 2024, 77, 109854.
6. Rehman, S. R. U.; Nelson, A.; Fazal, M. W.; et al. An ultralight porous carbon scaffold for anode-free lithium metal batteries. J. Mater. Chem. A. 2025, 13, 5081-90.
7. Huang, W.; Sun, Y.; Zhao, G.; et al. Constructing nano spinel phase and Li+ conductive network to enhance the electrochemical stability of ultrahigh-Ni cathode. Mater. Today. 2024, 79, 86-96.
8. Deng, Z.; Liu, Y.; Wang, L.; et al. Challenges of thermal stability of high-energy layered oxide cathode materials for lithium-ion batteries: a review. Mater. Today. 2023, 69, 236-61.
9. Wu, Z.; Zhang, C.; Yuan, F.; et al. Ni-rich cathode materials for stable high-energy lithium-ion batteries. Nano. Energy. 2024, 126, 109620.
10. Ryu, H.; Park, N.; Seo, J. H.; et al. A highly stabilized Ni-rich NCA cathode for high-energy lithium-ion batteries. Mater. Today. 2020, 36, 73-82.
11. Ryu, H.; Lim, H.; Lee, S. G.; Sun, Y. Near-surface reconstruction in Ni-rich layered cathodes for high-performance lithium-ion batteries. Nat. Energy. 2024, 9, 47-56.
12. Seong, W. M.; Cho, K. H.; Park, J. W.; et al. Controlling residual lithium in high-nickel (> 90 %) lithium layered oxides for cathodes in lithium-ion batteries. Angew. Chem. Int. Ed. 2020, 59, 18662-9.
13. Sheng, H.; Meng, X. H.; Xiao, D. D.; et al. An air-stable high-nickel cathode with reinforced electrochemical performance enabled by convertible amorphous Li2CO3 modification. Adv. Mater. 2022, 34, e2108947.
14. Song, M.; Lee, D.; Kim, J.; et al. Chemical decomposition pathway of residual lithium carbonate of Li-ion battery cathodes. J. Power. Sources. 2023, 560, 232699.
15. Du, Y.; Sheng, H.; Meng, X.; et al. Chemically converting residual lithium to a composite coating layer to enhance the rate capability and stability of single-crystalline Ni-rich cathodes. Nano. Energy. 2022, 94, 106901.
16. Cao, D.; Tan, C.; Chen, Y. Oxidative decomposition mechanisms of lithium carbonate on carbon substrates in lithium battery chemistries. Nat. Commun. 2022, 13, 4908.
17. Cui, Z.; Manthiram, A. Thermal stability and outgassing behaviors of high-nickel cathodes in lithium-ion batteries. Angew. Chem. Int. Ed. 2023, 62, e202307243.
18. Seong, W. M.; Kim, Y.; Manthiram, A. Impact of residual lithium on the adoption of high-nickel layered oxide cathodes for lithium-ion batteries. Chem. Mater. 2020, 32, 9479-89.
19. Freiberg, A. T.; Sicklinger, J.; Solchenbach, S.; Gasteiger, H. A. Li2CO3 decomposition in Li-ion batteries induced by the electrochemical oxidation of the electrolyte and of electrolyte impurities. Electrochim. Acta. 2020, 346, 136271.
20. Cui, Z.; Zuo, P.; Guo, Z.; Wang, C.; Manthiram, A. Formation and detriments of residual alkaline compounds on high-nickel layered oxide cathodes. Adv. Mater. 2024, 36, e2402420.
21. Wang, C.; Shao, L.; Guo, X.; et al. Air-induced degradation and electrochemical regeneration for the performance of layered Ni-rich cathodes. ACS. Appl. Mater. Interfaces. 2019, 11, 44036-45.
22. Aktekin, B.; Sedykh, A. E.; Müller-Buschbaum, K.; Henss, A.; Janek, J. The formation of residual lithium compounds on Ni-rich NCM oxides: their impact on the electrochemical performance of sulfide-based ASSBs. Adv. Funct. Mater. 2024, 34, 2313252.
23. Renfrew, S. E.; McCloskey, B. D. Residual lithium carbonate predominantly accounts for first cycle CO2 and CO outgassing of Li-stoichiometric and Li-rich layered transition-metal oxides. J. Am. Chem. Soc. 2017, 139, 17853-60.
24. Xia, Y.; Chen, A.; Wang, K.; et al. Industrial modification comparison of Ni-Rich cathode materials towards enhanced surface chemical stability against ambient air for advanced lithium-ion batteries. Chem. Eng. J. 2022, 450, 138382.
25. Gao, Y.; Jiang, R.; Dai, Z.; et al. Revealing the relationships between washing/recalcination processes and structure performance of Ni-rich layered cathode materials. ACS. Appl. Energy. Mater. 2022, 5, 15069-77.
26. Zhang, S. S.; Fan, X.; Wang, C. Enhanced electrochemical performance of Ni-rich layered cathode materials by using LiPF6 as a cathode additive. ChemElectroChem 2019, 6, 1536-41.
27. Kim, J.; Zhang, X.; Zhang, J.; Manthiram, A.; Meng, Y. S.; Xu, W. A review on the stability and surface modification of layered transition-metal oxide cathodes. Mater. Today. 2021, 46, 155-82.
28. Wen, Z.; Song, Y.; Shi, H.; et al. Improved electrochemical performance of single-crystal nickel-rich cathode by coating with different valence states metal oxides. J. Energy. Storage. 2024, 98, 113037.
29. Wei, J.; Xiong, H.; Zhang, H.; Li, X.; Liu, Y.; Shi, Z. Enhancement in the electrochemical stability at high voltage of high nickel cathode through constructing ultrathin LiCoPO4 coating. Appl. Surf. Sci. 2024, 659, 159922.
30. Yang, H.; Gao, R. M.; Zhang, X. D.; et al. Building a self-adaptive protective layer on Ni-rich layered cathodes to enhance the cycle stability of lithium-ion batteries. Adv. Mater. 2022, 34, e2204835.
31. Kim, S.; Kim, M.; Ku, M.; Park, J.; Lee, J.; Kim, Y. B. Coating robust layers on Ni-rich cathode active materials while suppressing cation mixing for all-solid-state lithium-ion batteries. ACS. Nano. 2024, 18, 25096-106.
32. Wu, F.; Shi, Q.; Chen, L.; et al. New insights into dry-coating-processed surface engineering enabling structurally and thermally stable high-performance Ni-rich cathode materials for lithium ion batteries. Chem. Eng. J. 2023, 470, 144045.
33. Chu, Y.; Mu, Y.; Zou, L.; et al. Thermodynamically stable dual-modified LiF&FeF3 layer empowering Ni-rich cathodes with superior cyclabilities. Adv. Mater. 2023, 35, e2212308.
34. Xia, S.; Huang, W.; Shen, X.; et al. Rearrangement on surface structures by boride to enhanced cycle stability for LiNi0.80Co0.15Al0.05O2 cathode in lithium ion batteries. J. Energy. Chem. 2020, 45, 110-8.
35. Negi, R. S.; Yusim, Y.; Pan, R.; et al. A dry-processed Al2O3/LiAlO2 coating for stabilizing the cathode/electrolyte interface in high-Ni NCM-based all-solid-state batteries. Adv. Mater. Inter. 2022, 9, 2101428.
36. Park, H. G.; Min, K.; Park, K. A synergistic effect of Na+ and Al3+ dual doping on electrochemical performance and structural stability of LiNi0.88Co0.08Mn0.04O2 cathodes for Li-ion batteries. ACS. Appl. Mater. Interfaces. 2022, 14, 5168-76.
37. Yang, Z.; Hu, Q.; Yang, H.; et al. Promoting air stability of Co-Li2O cathode additive via LiAlO2 coating for lithium-ion batteries. J. Electroanal. Chem. 2025, 983, 119042.
38. Liang, C.; Cheng, Y.; Lv, C.; et al. Surface oxygen-locked LiNi0.6Mn0.4O2: towards stable cycling at 4.7 V. Energy. Storage. Mater. 2025, 75, 104087.
39. Sun, Y.; Liu, Z.; Chen, X.; Yang, X.; Xiang, F.; Lu, W. Enhancing the stabilities and electrochemical performances of
40. Guo, X.; Li, S.; Dai, S.; Wu, S.; Liu, D.; Yang, G. The intricate roles of Al2O3 on the structure and electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathodematerials. J. Alloys. Compd. 2024, 984, 173931.
41. Lv, Y.; Huang, S.; Zhang, J.; et al. Antimony doping enabled radially aligned microstructurein LiNi0.91Co0.06Al0.03O2 cathode for high-voltage and low-temperature lithium battery. Adv. Funct. Mater. 2024, 34, 2312284.
42. Zhou, Y.; Zhang, H.; Wang, Y.; et al. Relieving stress concentration through anion-cation codoping toward highly stable nickel-rich cathode. ACS. Nano. 2023, 17, 20621-33.
43. Li, L.; Chen, Z.; Zhang, Q.; et al. A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium ion batteries. J. Mater. Chem. A. 2015, 3, 894-904.
44. Bichon, M.; Sotta, D.; Dupré, N.; et al. Study of immersion of LiNi0.5Mn0.3Co0.2O2 material in water for aqueous processing of positive electrode for Li-ion batteries. ACS. Appl. Mater. Interfaces. 2019, 11, 18331-41.
45. Wood, K. N.; Teeter, G. XPS on Li-battery-related compounds: analysis of inorganic SEI phases and a methodology for charge correction. ACS. Appl. Energy. Mater. 2018, 1, 4493-504.
46. Wu, F.; Dong, J.; Chen, L.; et al. High-voltage and high-safety nickel-rich layered cathode enabled by a self-reconstructive cathode/electrolyte interphase layer. Energy. Storage. Mater. 2021, 41, 495-504.
47. Wu, F.; Kim, G.; Kuenzel, M.; et al. Elucidating the effect of iron doping on the electrochemical performance of cobalt-free lithium-rich layered cathode materials. Adv. Energy. Mater. 2019, 9, 1902445.
48. Chen, Z.; Kim, G.; Bresser, D.; et al. MnPO4-coated Li(Ni0.4Co0.2Mn0.4)O2 for Lithium(-ion) batteries with outstanding cycling stability and enhanced lithiation kinetics. Adv. Energy. Mater. 2018, 8, 1801573.
49. Jung, C.; Kim, D.; Eum, D.; et al. New insight into microstructure engineering of Ni-rich layered oxide cathode for high performance lithium ion batteries. Adv. Funct. Mater. 2021, 31, 2010095.
50. Sun, Y.; Wang, C.; Huang, W.; et al. One-step calcination synthesis of bulk-doped surface-modified Ni-rich cathodes with superlattice for long-cycling Li-ion batteries. Angew. Chem. Int. Ed. 2023, 62, e202300962.