REFERENCES

1. Toberer, E. S.; May, A. F.; Snyder, G. J. Zintl chemistry for designing high efficiency thermoelectric materials. Chem. Mater. 2010, 22, 624-34.

2. Eklöf, D.; Fischer, A.; Wu, Y.; Scheidt, E.; Scherer, W.; Häussermann, U. Transport properties of the II-V semiconductor ZnSb. J. Mater. Chem. A. 2013, 1, 1407-14.

3. Wood, M.; Toriyama, M. Y.; Dugar, S.; et al. Phase boundary mapping of tin-doped ZnSb reveals thermodynamic route to high thermoelectric efficiency. Adv. Energy. Mater. 2021, 11, 2100181.

4. Samanta, M.; Ghosh, T.; Chandra, S.; Biswas, K. Layered materials with 2D connectivity for thermoelectric energy conversion. J. Mater. Chem. A. 2020, 8, 12226-61.

5. Hong, M.; Li, M.; Wang, Y.; Shi, X. L.; Chen, Z. G. Advances in versatile GeTe thermoelectrics from materials to devices. Adv. Mater. 2023, 35, 2208272.

6. L; Beihang University. Carriers: the less, the faster. Mat. Lab. 2022, 1, 1-3.

7. Fortulan, R.; Aminorroaya, Y. S. Recent progress in multiphase thermoelectric materials. Materials 2021, 14, 6059.

8. Yu, Y.; Zhou, C.; Zhang, S.; et al. Revealing nano-chemistry at lattice defects in thermoelectric materials using atom probe tomography. Mater. Today. 2020, 32, 260-74.

9. Luo, Z. Z.; Cai, S.; Hao, S.; et al. Strong valence band convergence to enhance thermoelectric performance in pbse with two chemically independent controls. Angew. Chem. Int. Ed. 2021, 60, 268-73.

10. Liu, Z.; Mao, J.; Liu, T.; Chen, G.; Ren, Z. Nano-microstructural control of phonon engineering for thermoelectric energy harvesting. MRS. Bull. 2018, 43, 181-6.

11. Vijay, V.; Harish, S.; Archana, J.; Navaneethan, M. Cation disorder and bond anharmonicity synergistically boosts the thermoelectric performance of p-type AgSbSe2. CrystEngComm 2021, 23, 5522-30.

12. Kimberly, T. Q.; Ciesielski, K. M.; Qi, X.; Toberer, E. S.; Kauzlarich, S. M. High thermoelectric performance in 2D Sb2Te3 and Bi2Te3 nanoplate composites enabled by energy carrier filtering and low thermal conductivity. ACS. Appl. Electron. Mater. 2024, 6, 2816-25.

13. Heremans, J. P.; Wiendlocha, B.; Chamoire, A. M. Resonant levels in bulk thermoelectric semiconductors. Energy. Environ. Sci. 2012, 5, 5510-30.

14. Zhou, M.; Gibbs, Z. M.; Wang, H.; Han, Y.; Li, L.; Snyder, G. J. Thermoelectric performance of co-doped SnTe with resonant levels. Appl. Phys. Lett. 2016, 109, 042102.

15. Samanta, M.; Ghosh, T.; Arora, R.; Waghmare, U. V.; Biswas, K. Realization of both n- and p-Type GeTe thermoelectrics: electronic structure modulation by AgBiSe2 alloying. J. Am. Chem. Soc. 2019, 141, 19505-12.

16. Liu, Z.; Zhu, J.; Tong, X.; Niu, S.; Zhao, W. A review of CoSb3-based skutterudite thermoelectric materials. J. Adv. Ceram. 2020, 9, 647-73.

17. Ge, B.; Li, R.; Zhu, M.; Yu, Y.; Zhou, C. Deformation mechanisms of inorganic thermoelectric materials with plasticity. Adv. Energy. Sustain. Res. 2024, 5, 2300197.

18. Zhang, Y.; Li, Z.; Singh, S.; et al. Defect-engineering-stabilized AgSbTe2 with high thermoelectric performance. Adv. Mater. 2023, 35, 2208994.

19. Kihou, K.; Kunioka, H.; Nishiate, H.; Lee, C. Thermoelectric properties of yttrium-doped Mg3(Sb,Bi)2 synthesized by melting method. J. Mater. Res. Technol. 2021, 10, 438-44.

20. Liu, W.; Yin, L.; Li, L.; et al. Grain boundary re-crystallization and sub-nano regions leading to high plateau figure of merit for Bi2Te3 nanoflakes. Energy. Environ. Sci. 2023, 16, 5123-35.

21. Li, X.; Gilbert, J. A.; Trask, S. E.; et al. Investigating ternary Li-Mg-Si Zintl phase formation and evolution for Si anodes in Li-ion batteries with Mg(TFSI)2 electrolyte additive. Chem. Mater. 2021, 33, 4960-70.

22. Yuan, Z.; Dahliah, D.; Hasan, M. R.; et al. Discovery of the Zintl-phosphide BaCd2P2 as a long carrier lifetime and stable solar absorber. Joule 2024, 8, 1412-29.

23. Zhu, Y.; Zhang, W.; Liu, Z.; Li, L. Hydrogen storage properties of the Zintl phase alloy SrAl2 doped with TiF3. J. Alloys. Compd. 2010, 492, 277-81.

24. Brehm, J. A. Predicted bulk photovoltaic effect in hydrogenated Zintl compounds. J. Mater. Chem. C. 2018, 6, 1470-5.

25. Bhardwaj, A.; Misra, D. K. Enhancing thermoelectric properties of a p-type Mg3Sb2-based Zintl phase compound by Pb substitution in the anionic framework. RSC. Adv. 2014, 4, 34552-60.

26. Zhou, Z.; Han, G.; Lu, X.; Wang, G.; Zhou, X. High-performance magnesium-based thermoelectric materials: progress and challenges. J. Magnes. Alloys. 2022, 10, 1719-36.

27. Han, Z.; Li, J.; Jiang, F.; et al. Room-temperature thermoelectric materials: challenges and a new paradigm. J. Materiomics. 2022, 8, 427-36.

28. Xiao, S.; Peng, K.; Zhou, Z.; et al. Realizing Cd and Ag codoping in p-type Mg3Sb2 toward high thermoelectric performance. J. Magnes. Alloys. 2023, 11, 2486-94.

29. Witting, I. T.; Ricci, F.; Chasapis, T. C.; Hautier, G.; Snyder, G. J. The thermoelectric properties of n-type bismuth telluride: bismuth selenide alloys Bi2Te3-xSex. Research 2020, 2020.

30. Xie, S.; Liu, K.; Li, C.; et al. Revealing the temperature-driven Lifshitz transition in p -type Mg3Sb2-based thermoelectric materials. Appl. Phys. Lett. 2024, 124, 093902.

31. Condron, C. L.; Kauzlarich, S. M.; Gascoin, F.; Snyder, G. J. Thermoelectric properties and microstructure of Mg3Sb2. J. Solid. State. Chem. 2006, 179, 2252-7.

32. Shi, X.; Wang, X.; Li, W.; Pei, Y. Advances in thermoelectric Mg3Sb2 and its derivatives. Small. Methods. 2018, 2, 1800022.

33. Jiang, J.; Zhu, H.; Niu, Y.; et al. Achieving high room-temperature thermoelectric performance in cubic AgCuTe. J. Mater. Chem. A. 2020, 8, 4790-9.

34. Liu, M.; Guo, M.; Zhu, J.; et al. High-performance CaMg2Bi2-based thermoelectric materials driven by lattice softening and orbital alignment via cadmium doping. Adv. Funct. Mater. 2024, 34, 2316075.

35. Li, J.; Liu, K.; Ma, X.; et al. Improvement of the thermoelectric properties of p-type Mg3Sb2 by Mg-site double substitution. Inorg. Chem. 2024, 63, 20126-32.

36. Zhang, Y.; Liang, J.; Liu, C.; et al. Enhancing thermoelectric performance in P-type Mg3Sb2-based Zintls through optimization of band gap structure and nanostructuring. J. Mater. Sci. Technol. 2024, 170, 25-32.

37. Liang, Z.; Xu, C.; Song, S.; Shi, X.; Ren, W.; Ren, Z. Enhanced thermoelectric performance of p-type Mg3Sb2 for reliable and low-cost all-Mg3Sb2-based thermoelectric low-grade heat recovery. Adv. Funct. Mater. 2023, 33, 2210016.

38. Radha, S.; Mani, J.; Rajkumar, R.; Arivanandhan, M.; Jayavel, R.; Anbalagan, G. Effect of Mn and Te doping on thermoelectric transport properties of Mg3.2-xMnxSb1.97Te0.03 (0 ≤ x ≤ 0.05) Zintl compound: synergistic approach for enhanced thermoelectric performance. Mater. Sci. Semicond. Process. 2023, 165, 107674.

39. Kannan, V. P.; Lourdhusamy, V.; Paulraj, I.; Liu, C. J.; Madanagurusamy, S. Enhanced thermoelectric performance of p-type Mg3-xZnxSb2/Sb composites: the role of ZnSb/Sb composites. ACS. Appl. Mater. Interfaces. 2023, 15, 47058-69.

40. Ren, Z.; Shuai, J.; Mao, J.; et al. Significantly enhanced thermoelectric properties of p-type Mg3Sb2 via co-doping of Na and Zn. Acta. Mater. 2018, 143, 265-71.

41. Pack, J. D.; Monkhorst, H. J. “Special points for Brillouin-zone integrations”-a reply. Phys. Rev. B. 1977, 16, 1748-9.

42. Ohno, S.; Imasato, K.; Anand, S.; et al. Phase boundary mapping to obtain n-type Mg3Sb2-based thermoelectrics. Joule 2018, 2, 141-54.

43. Gong, Y.; Dou, W.; Lu, B.; et al. Divacancy and resonance level enables high thermoelectric performance in n-type SnSe polycrystals. Nat. Commun. 2024, 15, 4231.

44. Song, L.; Zhang, J.; Iversen, B. B. Thermal stability of p-type Ag-doped Mg3Sb2 thermoelectric materials investigated by powder X-ray diffraction. Phys. Chem. Chem. Phys. 2019, 21, 4295-305.

45. Tiadi, M.; Battabyal, M.; Jain, P. K.; Chauhan, A.; Satapathy, D. K.; Gopalan, R. Enhancing the thermoelectric efficiency in p-type Mg3Sb2 via Mg site co-doping. Sustain. Energy. Fuels. 2021, 5, 4104-14.

46. Sidharth, D.; Srinivasan, B.; Nedunchezhian, A. A.; Thirukumaran, P.; Arivanandhan, M.; Jayavel, R. Enhancing the thermoelectric performance of nanostructured ZnSb by heterovalent bismuth substitution. J. Phys. Chem. Solids. 2022, 160, 110303.

47. Phillips, R.; Jolley, K.; Zhou, Y.; Smith, R. Influence of temperature and point defects on the X-ray diffraction pattern of graphite. Carbon. Trends. 2021, 5, 100124.

48. Lei, J.; Wuliji, H.; Ren, Q.; et al. Exceptional thermoelectric performance in AB2Sb2-type Zintl phases through band shaping. Energy. Environ. Sci. 2024, 17, 1416-25.

49. Li, J.; Chetty, R.; Liu, Z.; Gao, W.; Mori, T. Enhancing the thermoelectric performance of n-type Mg3Sb2-based materials via Ag doping. Small 2025, 21, 2408059.

50. Kim, I.; Jang, K.; Kim, I. Thermoelectric properties of Mg3-xZnxSb2 fabricated by mechanical alloying. Korean. J. Mater. Res. 2013, 23, 98-103.

51. Mao, J.; Shuai, J.; Song, S.; et al. Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg3Sb2-based materials. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 10548-53.

52. Luo, T.; Kuo, J. J.; Griffith, K. J.; et al. Nb-mediated grain growth and grain-boundary engineering in Mg3Sb2-based thermoelectric materials. Adv. Funct. Mater. 2021, 31, 2100258.

53. Chen, X.; Wu, H.; Cui, J.; et al. Extraordinary thermoelectric performance in n-type manganese doped Mg3Sb2 Zintl: high band degeneracy, tuned carrier scattering mechanism and hierarchical microstructure. Nano. Energy. 2018, 52, 246-55.

54. Song, J.; Luo, P.; Sun, H.; et al. Bismuth-free Mg3Sb2 with enhanced room-temperature thermoelectric and mechanical properties. J. Materiomics. 2024, 10, 1101-8.

55. Kim, D.; Syers, P.; Butch, N. P.; Paglione, J.; Fuhrer, M. S. Ambipolar surface state thermoelectric power of topological insulator Bi2Se3. Nano. Lett. 2014, 14, 1701-6.

56. Shi, X.; Zhang, X.; Ganose, A.; et al. Compromise between band structure and phonon scattering in efficient n-Mg3Sb2-Bi thermoelectrics. Mater. Today. Phys. 2021, 18, 100362.

57. Wei, Z.; Li, Z.; Luo, P.; Zhang, J.; Luo, J. Simultaneously increased carrier concentration and mobility in p-type Bi0.5Sb1.5Te3 throng Cd doping. J. Alloys. Compd. 2020, 830, 154625.

58. Kumar, R.; Bhatt, R.; Tewary, A.; et al. Synergistic effect of Zn doping on thermoelectric properties to realize a high figure-of-merit and conversion efficiency in Bi2-xZnxTe3 based thermoelectric generators. J. Mater. Chem. C. 2022, 10, 7970-9.

59. Sarkar, S.; Sarswat, P. K.; Saini, S.; Mele, P.; Free, M. L. Synergistic effect of band convergence and carrier transport on enhancing the thermoelectric performance of Ga doped Cu2Te at medium temperatures. Sci. Rep. 2019, 9, 8180.

60. Vijay, V.; Karuna, J.; Archana, J.; Navaneethan, M. Phonon-charge carrier dynamics via grain-boundary phase in equilibrium reaction of higher manganese silicide/CNF hybrid composites. Appl. Phys. Lett. 2024, 125, 171603.

61. Kannan, V. P.; Lourdhusamy, V.; Paulraj, I.; Madanagurusamy, S.; Liu, C. J. Significantly enhanced thermoelectric performance of p-Type Mg3Sb2 via Zn substitution on Mg2 site: optimization of hole concentration through Ag doping. ACS. Appl. Mater. Interfaces. 2024, 16, 58677-88.

62. Ning, S.; Huang, S.; Zhang, Z.; et al. Band convergence boosted high thermoelectric performance of Zintl compound Mg3Sb2 achieved by biaxial strains. J. Materiomics. 2022, 8, 1086-94.

63. Ji, Z.; Wei, Z.; Yu, L.; et al. Energy band convergence improves thermoelectric properties of p-type YbMg2Sb2-based materials by solution alloying and biaxial strain. Appl. Mater. Today. 2024, 36, 102075.

64. Xia, C.; Cui, J.; Chen, Y. Modulation of band alignment and electron-phonon scattering in Mg3Sb2 via pressure. ACS. Appl. Electron. Mater. 2020, 2, 2745-9.

65. Xie, S.; Wan, X.; Wu, Y.; et al. Topological electronic transition contributing to improved thermoelectric performance in p-type Mg3Sb2-xBix solid solutions. Adv. Mater. 2024, 36, 2400845.

66. Snyder, G. J.; Snyder, A. H.; Wood, M.; Gurunathan, R.; Snyder, B. H.; Niu, C. Weighted mobility. Adv. Mater. 2020, 32, 2001537.

67. Li, X.; Yang, B.; Xie, H.; et al. Synergistic effects of Mg vacancy and Ag doping on thermoelectric transport properties of p-type Mg3Sb2. Mater. Res. Bull. 2023, 159, 112106.

68. Zhang, Q.; Gao, Y.; Xie, H.; Ren, P.; Shan, Z.; Fan, J. Electric wind induced texturing for enhanced thermoelectric performance of p-type Mg3Sb2-based materials. Appl. Mater. Today. 2024, 40, 102391.

69. Niu, Y.; Yang, C.; Zhou, T.; et al. Enhanced average thermoelectric figure of merit of p-type Zintl phase Mg2ZnSb2 via Zn vacancy tuning and hole doping. ACS. Appl. Mater. Interfaces. 2020, 12, 37330-7.

70. Vaiyapuri, V.; Shanmugasundaram, K.; Jayaram, A.; Mani, N. Band flattening and strain field assists an excellent thermoelectric performance of n-type Bi2Se3 for room to mid-temperature application. Small 2025, 21, 2410622.

71. Gupta, S.; Ganguli, A. K.; Corbett, J. D. Mg5.23Sm0.77Sb4: an ordered superstructure derived from the Mg3Sb2 structure type. Inorg. Chem. 2006, 45, 8175-8.

72. Sootsman, J.; Kong, H.; Uher, C.; et al. Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring. Angew. Chem. 2008, 120, 8746-50.

73. Priyadharshini, S.; Vijay, V.; Kamalakannan, S.; Archana, J.; Navaneethan, M. Realizing an ultralow thermal conductivity via interfacial scattering and rational-electronic band reformation in p-type Mg3Sb2. Appl. Phys. Lett. 2024, 124, 031601.

74. Wang, H.; Chen, J.; Lu, T.; et al. Enhanced thermoelectric performance in p-type Mg3Sb2 via lithium doping. Chin. Phys. B. 2018, 27, 047212.

75. Kong, D.; Zhao, H.; Fan, X. Enhanced thermoelectric performance of a p-type Mg3Sb2-based Zintl phase compound via Ge doping. J. Solid. State. Chem. 2024, 339, 124977.

76. Wang, Y.; Zhang, X.; Liu, Y.; Wang, Y.; Zhang, J.; Yue, M. Optimizing the thermoelectric performance of p-type Mg3Sb2 by Sn doping. Vacuum 2020, 177, 109388.

77. Rahman, M. M.; Kim, I.; Ur, S. Effect of Sn doping on the thermoelectric properties of P-type Mg3Sb2 synthesized by controlled melting, pulverizing followed by vacuum hot pressing. Korean. J. Mater. Res. 2022, 32, 132-8.

78. Prabu, K. V.; Lourdhusamy, V.; Paulraj, I.; Sridharan, M.; Liu, C. Enhancing the thermoelectric power factor of Mg3Sb2 with Sn doping on electronegative sites of Sb: effects of reducing the electronegativity difference. Mater. Chem. Phys. 2023, 297, 127379.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/