REFERENCES

1. Diau, E. W. Next-generation solar cells and conversion of solar energy. ACS. Energy. Lett. 2017, 2, 334-5.

2. Shockley, W.; Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 1961, 32, 510-9.

3. Wang, K.; Zheng, L.; Hou, Y.; et al. Overcoming shockley-queisser limit using halide perovskite platform? Joule 2022, 6, 756-71.

4. Li, Z.; Chen, Y.; Guo, R.; et al. Doubling power conversion efficiency of Si solar cells. Adv. Mater. 2024, 36, 2405724.

5. Green, M. A.; Dunlop, E. D.; Yoshita, M.; et al. Solar cell efficiency tables (version 64). Prog. Photovolt. Res. Appl. 2024, 32, 425-41.

6. Gordon, J. M.; Moses, G.; Katz, E. A. Boosting silicon photovoltaic efficiency from regasification of liquefied natural gas. Energy 2021, 214, 118907.

7. Schulte, K. L.; Johnston, S. W.; Braun, A. K.; et al. GaAs solar cells grown on acoustically spalled GaAs substrates with 27% efficiency. Joule 2023, 7, 1529-42.

8. Li, Z.; Kim, T. H.; Han, S. Y.; et al. Wide-bandgap perovskite/gallium arsenide tandem solar cells. Adv. Energy. Mater. 2020, 10, 1903085.

9. Wu, P.; Zhao, F.; Cui, L.; et al. Realization of 27.84% efficiency of the GaAs/PEDOT: PSS thin-film hybrid solar cell based on high solar energy absorption. Opt. Laser. Technol. 2023, 164, 109532.

10. Núñez, N.; González, J. R.; Vázquez, M.; Algora, C.; Espinet, P. Evaluation of the reliability of high concentrator GaAs solar cells by means of temperature accelerated aging tests. Prog. Photovolt. Res. Appl. 2013, 21, 1104-13.

11. Zuleeg, R. Radiation effects in GaAs FET devices. Proc. IEEE. , 1989;77, 389-407.

12. Yoon, G. W.; Jo, B.; Boonmongkolras, P.; Han, G. S.; Jung, H. S. Perovskite tandem solar cells for low earth orbit satellite power applications. Adv. Energy. Mater. 2025, 15, 2400204.

13. Tu, Y.; Wu, J.; Xu, G.; et al. Perovskite solar cells for space applications: progress and challenges. Adv. Mater. 2021, 33, 2006545.

14. Xu, G.; Cai, P.; Tu, Y.; et al. Calibration for space solar cells: progress, prospects, and challenges. Sol. RRL. 2024, 8, 2300822.

15. Mazouz, H.; Belghachi, A.; Logerais, P.; Delaleux, F.; Riou, O. Numerical simulation of GaAs solar cell aging under electron and proton irradiation. IEEE. J. Photovoltaics. 2019, 9, 1774-82.

16. Ataser, T. The performance analysis of the GaAs/c-InN solar photovoltaic cell hetero-structure: temperature dependence. Opt. Quant. Electron. 2020, 52, 407.

17. Strauss, R. D. T. Voyager 2 enters interstellar space. Nat. Astron. 2019, 3, 963-4.

18. Liu, H.; Yao, Z.; Liu, H. Human lunar base: “Lunar Palace 1” team of Beihang University unveils China’s “Lunar Palace” plan. Innovation 2024, 5, 100592.

19. Alnami, N.; Kumar, R.; Saha, S.; et al. Temperature dependent behavior of sub-monolayer quantum dot based solar cell. Sol. Energy. Mater. Sol. Cells. 2023, 259, 112448.

20. Garduno-nolasco, E.; Missous, M.; Donoval, D.; Kovac, J.; Mikolasek, M. Temperature dependence of InAs/GaAs quantum dots solar photovoltaic devices. J. Semicond. 2014, 35, 054001.

21. Ahmad, N. Carrier freeze-out effects in semiconductor devices. J. Appl. Phys. 1987, 61, 1905-9.

22. Piqueux, S.; Kass, D. M.; Kleinböhl, A.; et al. Mars thermal inertia and surface temperatures by the mars climate sounder. Icarus 2024, 419, 115851.

23. Cho, Y.; Gainer, G. H.; Fischer, A. J.; et al. “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells. Appl. Phys. Lett. 1998, 73, 1370-2.

24. der Does de Bye J, Vink A. Minority carrier lifetime in p-type gallium phosphide. J. Lumin. 1972, 5, 108-16.

25. Murotani, H.; Miyoshi, H.; Takeda, R.; et al. Correlation between excitons recombination dynamics and internal quantum efficiency of AlGaN-based UV-A multiple quantum wells. J. Appl. Phys. 2020, 128, 105704.

26. Radziemska, E. Thermal performance of Si and GaAs based solar cells and modules: a review. Prog. Energy. Combust. Sci. 2003, 29, 407-24.

27. Potscavage, W. J. J.; Sharma, A.; Kippelen, B. Critical interfaces in organic solar cells and their influence on the open-circuit voltage. Acc. Chem. Res. 2009, 42, 1758-67.

28. Singh, P.; Ravindra, N. Temperature dependence of solar cell performance-an analysis. Sol. Energy. Mater. Sol. Cells. 2012, 101, 36-45.

29. Keller, R. A.; Rast, H. E. Tunneling model for electron transport and its temperature dependence in crystals of low carrier mobility. example: anthracene. J. Chem. Phys. 1962, 36, 2640-3.

30. Li, Z.; Wang, T.; Varela-Manjarres, J.; et al. Light-induced colossal magnetoresistance and ultrasensitive hall resistance of intrinsic silicon. Adv. Opt. Mater. 2025, 2403577.

31. Smestad, G. Semiconductors for solar cells. Sol. Energy. Mater. Sol. Cells. 1996, 43, 425-6.

32. Campesato, R.; Flores, C. Effects of low temperatures and intensities on GaAs and GaAs/Ge solar cells. IEEE. Trans. Electron. Devices. 1991, 38, 1233-7.

33. Fan, J. C. Theoretical temperature dependence of solar cell parameters. Sol. Cells. 1986, 17, 309-15.

34. Perl, E. E.; Simon, J.; Geisz, J. F.; Lee, M. L.; Friedman, D. J.; Steiner, M. A. Measurements and modeling of III-V solar cells at high temperatures up to 400 °C. IEEE. J. Photovoltaics. 2016, 6, 1345-52.

35. Vadiee, E.; Fang, Y.; Zhang, C.; et al. Temperature dependence of GaSb and AlGaSb solar cells. Curr. Appl. Phys. 2018, 18, 752-61.

36. Beekman, M.; Heaton, G.; Linker, T. M.; Johnson, D. C. Material considerations for thermoelectric enhancement via modulation doping. Appl. Phys. A. 2020, 126, 517.

37. Kavangary, A.; Graf, P.; Azazoglu, H.; et al. Temperature dependent electrical characteristics of a junction field effect transistor for cryogenic sub-attoampere charge detection. AIP. Adv. 2019, 9, 025104.

38. Weisberg, L. R. Auger recombination in GaAs. J. Appl. Phys. 1968, 39, 6096-8.

39. Black, J.; Lockwood, H.; Mayburg, S. Recombination radiation in GaAs. J. Appl. Phys. 1963, 34, 178-80.

40. Birey, H.; Sites, J. Radiative transitions induced in gallium arsenide by modest heat treatment. J. Appl. Phys. 1980, 51, 619-24.

41. Bugajski, M.; Ko, K. H.; Lagowski, J.; Gatos, H. C. Native acceptor levels in Ga-rich GaAs. J. Appl. Phys. 1989, 65, 596-9.

42. Huang, J.; Shang, L.; Ma, S.; et al. Low temperature photoluminescence study of GaAs defect states*. Chin. Phys. B. 2020, 29, 010703.

43. Vurgaftman, I.; Meyer, J. R.; Ram-mohan, L. R. Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 2001, 89, 5815-75.

44. Lautenschlager, P.; Garriga, M.; Logothetidis, S.; Cardona, M. Interband critical points of GaAs and their temperature dependence. Phys. Rev. B. 1987, 35, 9174-89.

45. Lambkin, J. D.; Considine, L.; Walsh, S.; O’connor, G. M.; Mcdonagh, C. J.; Glynn, T. J. Temperature dependence of the photoluminescence intensity of ordered and disordered In0.48Ga0.52P. Appl. Phys. Lett. 1994, 65, 73-5.

46. Reshchikov, M. A. Temperature dependence of defect-related photoluminescence in III-V and II-VI semiconductors. J. Appl. Phy. 2014, 115, 012010.

47. Wang, J.; Yi, T.; Zheng, Y.; Wu, R.; Wang, R. Temperature-dependent photoluminescence analysis of 1.0 MeV electron irradiation-induced nonradiative recombination centers in n+-p GaAs middle cell of GaInP/GaAs/Ge triple-junction solar cells. Chinese. Phys. Lett. 2017, 34, 076106.

48. Farr, P.; Sidikejiang, S.; Horenburg, P.; Bremers, H.; Rossow, U.; Hangleiter, A. Unity quantum efficiency in III-nitride quantum wells at low temperature: experimental verification by time-resolved photoluminescence. Appl. Phys. Lett. 2021, 119, 011106.

49. Ishii, R.; Tanaka, S.; Susilo, N.; et al. Radiative and nonradiative recombination processes in AlGaN quantum wells on epitaxially laterally overgrown AlN/sapphire from 10 to 500 K. Phys. Status. Solidi. B. 2024, 261, 2400018.

50. Chen, R.; Li, D.; Liu, B.; et al. Optical and excitonic properties of crystalline ZnS nanowires: toward efficient ultraviolet emission at room temperature. Nano. Lett. 2010, 10, 4956-61.

51. Wang, Z.; Wang, L.; Xing, Y.; et al. Consistency on two kinds of localized centers examined from temperature-dependent and time-resolved photoluminescence in InGaN/GaN multiple quantum wells. ACS. Photonics. 2017, 4, 2078-84.

52. Niemeyer, M.; Kleinschmidt, P.; Walker, A. W.; et al. Measurement of the non-radiative minority recombination lifetime and the effective radiative recombination coefficient in GaAs. AIP. Adv. 2019, 9, 045034.

53. Mathur, P. C.; Arora, J. D.; Sharma, R. P.; Saxena, P. Dependence of minority carrier diffusion length on illumination level and temperature in single crystal and polycrystalline Si solar cells. J. Appl. Phys. 1981, 52, 6949-53.

54. Koster, L. J. A.; Mihailetchi, V. D.; Xie, H.; Blom, P. W. M. Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells. Appl. Phys. Lett. 2005, 87, 203502.

55. Dale, B.; Smith, F. P. Spectral response of solar cells. J. Appl. Phys. 1961, 32, 1377-81.

56. Ho, C.; Mathias, J. Effect of short wavelength illumination on the characteristic bulk diffusion length in ribbon silicon solar cells. Solid-State. Electron. 1981, 24, 115-20.

57. Abudulimu, A.; Carter, S.; Phillips, A. B.; et al. Comprehensive study of carrier recombination in high-efficiency CdTe solar cells using transient photovoltage. Sol. RRL. 2024, 8, 2400131.

58. Wang, A.; Xuan, Y. A detailed study on loss processes in solar cells. Energy 2018, 144, 490-500.

59. Liu, C.; Lu, Y.; Shen, R.; et al. Dynamics and physical process of hot carriers in optoelectronic devices. Nano. Energy. 2022, 95, 106977.

60. Zhang, Y.; Conibeer, G.; Liu, S.; Zhang, J.; Guillemoles, J. Review of the mechanisms for the phonon bottleneck effect in III-V semiconductors and their application for efficient hot carrier solar cells. Prog. Photovolt. Res. Appl. 2022, 30, 581-96.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/