REFERENCES

1. Liu, S.; Zhang, R.; Wang, C.; et al. Zinc ion batteries: bridging the gap from academia to industry for grid-scale energy storage. Angew. Chem. Int. Ed. 2024, 63, e202400045.

2. Luo, C.; Lei, H.; Xiao, Y.; et al. Recent development in addressing challenges and implementing strategies for manganese dioxide cathodes in aqueous zinc ion batteries. Energy. Mater. 2024, 4, 400036.

3. Li, J.; Liang, H. Organic cathode materials for aqueous zinc-organic batteries. Energy. Mater. 2024, 4, 400033.

4. Cui, Y.; Ding, Y.; Guo, L.; et al. Ultra-long Zn3V2O7(OH)2·2H2O nanowires grown on carbon cloth as cathode material for aqueous zinc-ion batteries. Energy. Mater. 2023, 3, 300023.

5. Miao, L.; Guo, Z.; Jiao, L. Insights into the design of mildly acidic aqueous electrolytes for improved stability of Zn anode performance in zinc-ion batteries. Energy. Mater. 2023, 3, 300014.

6. Han, M.; Chen, D.; Lu, Q.; Fang, G. Aqueous rechargeable Zn-iodine batteries: issues, strategies and perspectives. Small 2024, 20, e2310293.

7. Li, G.; Sun, L.; Zhang, S.; et al. Developing cathode materials for aqueous zinc ion batteries: challenges and practical prospects. Adv. Funct. Mater. 2024, 34, 2301291.

8. Ma, Q.; Ma, A.; Lv, S.; et al. Regulating zinc ion transport behavior and solvated structure towards stable aqueous Zn metal batteries. J. Energy. Chem. 2024, 93, 609-26.

9. Qian, Y.; Chen, L. Interfacial engineering of manganese-based oxides for aqueous zinc-ion batteries: Advances, mechanisms, challenges and perspectives. J. Energy. Chem. 2024, 99, 553-79.

10. Guo, Y.; Liu, C.; Xu, L.; et al. A cigarette filter-derived nitrogen-doped carbon nanoparticle coating layer for stable Zn-ion battery anodes. Energy. Mater. 2022, 2, 200032.

11. Zhu, Q.; Sun, G.; Qiao, S.; et al. Selective shielding of the (002) plane enabling vertically oriented zinc plating for dendrite-free zinc anode. Adv. Mater. 2024, 36, e2308577.

12. Yuan, Y.; Pu, S. D.; Pérez-Osorio, M. A.; et al. Diagnosing the electrostatic shielding mechanism for dendrite suppression in aqueous zinc batteries. Adv. Mater. 2024, 36, e2307708.

13. Tu, W.; Liang, S.; Song, L.; Wang, X.; Ji, G.; Xu, J. Nanoengineered functional cellulose ionic conductor toward high- performance all-solid-state zinc-ion battery. Adv. Funct. Mater. 2024, 34, 2316137.

14. Ge, H.; Xie, X.; Xie, X.; et al. Critical challenges and solutions: quasi-solid-state electrolytes for zinc-based batteries. Energy. Environ. Sci. 2024, 17, 3270-306.

15. Zhang, B.; Cai, X.; Li, J.; et al. Biocompatible and stable quasi-solid-state zinc-ion batteries for real-time responsive wireless wearable electronics. Energy. Environ. Sci. 2024, 17, 3878-87.

16. Liu, C.; Xu, W.; Zhang, L.; et al. Electrochemical hydrophobic tri-layer interface rendered mechanically graded solid electrolyte interface for stable zinc metal anode. Angew. Chem. Int. Ed. 2024, 63, e202318063.

17. Cui, Y.; Chen, W.; Xin, W.; et al. Gradient quasi-solid electrolyte enables selective and fast ion transport for robust aqueous zinc-ion batteries. Adv. Mater. 2024, 36, e2308639.

18. Wang, J.; Peng, J.; Huang, W.; et al. Enabling stable Zn anode with PVDF/CNTs nanocomposites protective layer toward high-performance aqueous zinc-ion batteries. Adv. Funct. Mater. 2024, 34, 2316083.

19. Lee, Y.; Jeoun, Y.; Kim, J. H.; et al. Selective ion transport layer for stable aqueous zinc-ion batteries. Adv. Funct. Mater. 2024, 34, 2310884.

20. Liu, Z.; Guo, Z.; Fan, L.; et al. Construct robust epitaxial growth of (101) textured zinc metal anode for long life and high capacity in mild aqueous zinc-ion batteries. Adv. Mater. 2024, 36, e2305988.

21. Wu, T.; Hu, C.; Zhang, Q.; et al. Helmholtz plane reconfiguration enables robust zinc metal anode in aqueous zinc-ion batteries. Adv. Funct. Mater. 2024, 34, 2315716.

22. Al-Abbasi, M.; Zhao, Y.; He, H.; et al. Challenges and protective strategies on zinc anode toward practical aqueous zinc-ion batteries. Carbon. Neutral. 2024, 3, 108-41.

23. Wang, Z.; Zhou, D.; Zhou, Z.; et al. Synergistic effect of 3D elastomer/super-ionic conductor hybrid fiber networks enables zinc anode protection for aqueous zinc-ion batteries. Adv. Funct. Mater. 2024, 34, 2313371.

24. Zhu, Y.; Liang, G.; Cui, X.; et al. Engineering hosts for Zn anodes in aqueous Zn-ion batteries. Energy. Environ. Sci. 2024, 17, 369-85.

25. Yan, K.; Fan, Y.; Hu, F.; et al. A “polymer-in-salt” solid electrolyte enabled by fast phase transition route for stable Zn batteries. Adv. Funct. Mater. 2024, 34, 2307740.

26. Li, Y.; Yang, X.; He, Y.; et al. A novel ultrathin multiple-kinetics-enhanced polymer electrolyte editing enabled wide-temperature fast-charging solid-state zinc metal batteries. Adv. Funct. Mater. 2024, 34, 2307736.

27. Ji, S.; Luo, H.; Qin, S.; et al. Component fluctuation modulated gelation effect enable temperature adaptability in zinc-ion batteries. Adv. Energy. Mater. 2024, 14, 2400063.

28. Wang, Y.; Li, Q.; Hong, H.; et al. Lean-water hydrogel electrolyte for zinc ion batteries. Nat. Commun. 2023, 14, 3890.

29. Qi, R.; Tang, W.; Shi, Y.; et al. Gel polymer electrolyte toward large-scale application of aqueous zinc batteries. Adv. Funct. Mater. 2023, 33, 2306052.

30. He, Q.; Chang, Z.; Zhong, Y.; et al. Highly entangled hydrogel enables stable zinc metal batteries via interfacial confinement effect. ACS. Energy. Lett. 2023, 8, 5253-63.

31. Yan, Y.; Duan, S.; Liu, B.; et al. Tough hydrogel electrolytes for anti-freezing zinc-ion batteries. Adv. Mater. 2023, 35, e2211673.

32. Chinnakutti, K. K.; Treerittiwittaya, W.; Gao, H.; Tapia-Ruiz, N.; Kidkhunthod, P.; Kasemchainan, J. Solid-state Zn-ion batteries using composite cellulose polyethylene oxide materials-Illustration of reaction and capacity fading mechanisms. Polymer 2024, 299, 126949.

33. Chen, Y.; Zhao, J.; Wang, Y. Quasi-solid-state zinc ion rechargeable batteries for subzero temperature applications. ACS. Appl. Energy. Mater. 2020, 3, 9058-65.

34. Yang, Z.; Zhang, Q.; Wu, T.; et al. Thermally healable electrolyte-electrode interface for sustainable quasi-solid zinc-ion batteries. Angew. Chem. Int. Ed. 2024, 63, e202317457.

35. Wang, N.; Liu, H.; Sun, M.; et al. Achieving wide-temperature-range sustainable zinc-ion batteries via magnesium-doped cathodes and gel electrolytes. ACS. Sustain. Chem. Eng. 2024, 12, 3527-37.

36. Xu, L.; Meng, T.; Zheng, X.; et al. Nanocellulose-carboxymethylcellulose electrolyte for stable, high-rate zinc-ion batteries. Adv. Funct. Mater. 2023, 33, 2302098.

37. Li, W.; Wang, Y.; Liu, R.; Chen, W.; Zhang, H.; Zhang, Z. Gel polymer-based composite solid-state electrolyte for long-cycle-life rechargeable zinc-air batteries. ACS. Sustain. Chem. Eng. 2023, 11, 3732-9.

38. Ma, R.; Xu, Z.; Wang, X. Polymer hydrogel electrolytes for flexible and multifunctional zinc-ion batteries and capacitors. Energy. Environ. Mater. 2023, 6, e12464.

39. Yang, L.; Fu, Y.; Liu, H.; Nie, Q.; Zhang, M.; Shen, Z. Investigating the zinc deposition behavior in aqueous zinc-ion batteries with PEG/cellulose/ZnCl2 water-in-salt electrolytes via a homemade visualized three-electrode tubular cell. ACS. Sustain. Chem. Eng. 2023, 11, 10311-23.

40. Li, Y.; Yang, S.; You, Y.; et al. Cellulose nanocrystals built multiscale hydrogel electrolyte for highly reversible all-flexible zinc ion batteries. Chem. Eng. J. 2024, 496, 154357.

41. Lim, G. J. H.; Koh, J. J.; Chan, K. K.; et al. Amorphous cellulose electrolyte for long life and mechanically robust aqueous structural batteries. Adv. Funct. Mater. 2024, 34, 2313531.

42. Han, X.; Chen, L.; Yanilmaz, M.; et al. From nature, requite to nature: bio-based cellulose and its derivatives for construction of green zinc batteries. Chem. Eng. J. 2023, 454, 140311.

43. Zhang, H.; Gan, X.; Yan, Y.; Zhou, J. A sustainable dual cross-linked cellulose hydrogel electrolyte for high-performance zinc-metal batteries. Nanomicro. Lett. 2024, 16, 106.

44. Li, H.; Han, C.; Huang, Y.; et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy. Environ. Sci. 2018, 11, 941-51.

45. Gaussian 16 Rev. C.01/C.02 release notes. Available from: https://gaussian.com/relnotes/ [Last accessed on 16 May 2025]

46. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623-7.

47. Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650-4.

48. Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456-65.

49. Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. Energy-adjusted ab initio pseudopotentials for the first row transition elements. J. Chem. Phys. 1987, 86, 866-72.

50. Pritchard, B. P.; Altarawy, D.; Didier, B.; Gibson, T. D.; Windus, T. L. New basis set exchange: an open, up-to-date resource for the molecular sciences community. J. Chem. Inf. Model. 2019, 59, 4814-20.

51. Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999-3093.

52. Lu, T.; Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580-92.

53. Lu, T.; Manzetti, S. Wavefunction and reactivity study of benzo[a]pyrene diol epoxide and its enantiomeric forms. Struct. Chem. 2014, 25, 1521-33.

54. Lu, T.; Chen, F. Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm. J. Mol. Graph. Model. 2012, 38, 314-23.

55. Zhang, J.; Lu, T. Efficient evaluation of electrostatic potential with computerized optimized code. Phys. Chem. Chem. Phys. 2021, 23, 20323-8.

56. Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 1996, 14, 33-8.

57. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

58. Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Account. 2008, 120, 215-41.

59. Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297-305.

60. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B. 2009, 113, 6378-96.

61. Lv, D.; Chai, J.; Wang, P.; et al. Pure cellulose lithium-ion battery separator with tunable pore size and improved working stability by cellulose nanofibrils. Carbohydr. Polym. 2021, 251, 116975.

62. Chen, S.; Jang, H.; Wang, J.; Qin, Q.; Liu, X.; Cho, J. Bimetallic metal-organic framework-derived MoFe-PC microspheres for electrocatalytic ammonia synthesis under ambient conditions. J. Mater. Chem. A. 2020, 8, 2099-104.

63. Fernández, S.; Mercado, A.; Cuara, E.; Yeverino-miranda, C.; Sierra, U. Asphalt as raw material of graphene-like resources. Fuel 2019, 241, 297-303.

64. Romero-sarria, F.; Bobadilla, L.; Jiménez, B. E.; Odriozola, J. Experimental evidence of HCO species as intermediate in the fischer tropsch reaction using operando techniques. Appl. Catal. B. Environ. 2020, 272, 119032.

65. Ma, M.; Dai, L.; Xu, J.; Liu, Z.; Ni, Y. A simple and effective approach to fabricate lignin nanoparticles with tunable sizes based on lignin fractionation. Green. Chem. 2020, 22, 2011-7.

66. Yu, B.; Park, K.; Jang, J.; Goodenough, J. B. Cellulose-based porous membrane for suppressing Li dendrite formation in lithium-sulfur battery. ACS. Energy. Lett. 2016, 1, 633-7.

67. Adams, R. A.; Varma, A.; Pol, V. G. Mechanistic elucidation of thermal runaway in potassium-ion batteries. J. Power. Sources. 2018, 375, 131-7.

68. Ouyang, Q.; Wang, X.; Wang, X.; Huang, J.; Huang, X.; Chen, Y. Simultaneous DSC/TG analysis on the thermal behavior of PAN polymers prepared by aqueous free-radical polymerization. Polym. Degrad. Stabil. 2016, 130, 320-7.

69. Zhang, X. Q.; Chen, X.; Cheng, X. B.; et al. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angew. Chem. Int. Ed. 2018, 57, 5301-5.

70. Yu, H.; Chen, Y.; Wang, H.; et al. Engineering multi-functionalized molecular skeleton layer for dendrite-free and durable zinc batteries. Nano. Energy. 2022, 99, 107426.

71. Tie, Z.; Liu, L.; Deng, S.; Zhao, D.; Niu, Z. Proton insertion chemistry of a zinc-organic battery. Angew. Chem. Int. Ed. 2020, 59, 4920-4.

72. Ye, Z.; Xie, S.; Cao, Z.; et al. High-rate aqueous zinc-organic battery achieved by lowering HOMO/LUMO of organic cathode. Energy. Storage. Mater. 2021, 37, 378-86.

73. Chen, Z.; Cui, H.; Hou, Y.; et al. Anion chemistry enabled positive valence conversion to achieve a record high-voltage organic cathode for zinc batteries. Chem 2022, 8, 2204-16.

74. Amanchukwu, C. V.; Kong, X.; Qin, J.; Cui, Y.; Bao, Z. Nonpolar alkanes modify lithium-ion solvation for improved lithium deposition and stripping. Adv. Energy. Mater. 2019, 9, 1902116.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/