REFERENCES
1. Randau, S.; Weber, D. A.; Kötz, O.; et al. Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy. 2020, 5, 259-70.
2. Hou, D.; Xu, Z.; Yang, Z.; et al. Effect of the grain arrangements on the thermal stability of polycrystalline nickel-rich lithium-based battery cathodes. Nat. Commun. 2022, 13, 3437.
3. Chen, S.; Wen, K.; Fan, J.; Bando, Y.; Golberg, D. Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes. J. Mater. Chem. A. 2018, 6, 11631-63.
4. Vinayak, A. K.; Li, M.; Huang, X.; et al. Circular economies for lithium-ion batteries and challenges to their implementation. Next. Mater. 2024, 5, 100231.
5. Man, Q.; An, Y.; Shen, H.; et al. MXenes and their derivatives for advanced solid-state energy storage devices. Adv. Funct. Mater. 2023, 33, 2303668.
6. Tron, A.; Hamid, R.; Zhang, N.; Beutl, A. Rational optimization of cathode composites for sulfide-based all-solid-state batteries. Nanomaterials 2023, 13, 327.
7. Liu, W.; Li, D.; Liu, Y.; Luo, D.; Xu, R. A critical review of single-crystal LiNixMnyCo1-x-yO2 cathode materials. Renewables 2024, 2, 25-51.
8. Bin, A. S. A. D. A.; Imaduddin, I. S.; Majid, S.; et al. Nickel-rich nickel-cobalt-manganese and nickel-cobalt-aluminum cathodes in lithium-ion batteries: Pathways for performance optimization. J. Cleaner. Prod. 2024, 435, 140324.
9. Saaid, F. I.; Kasim, M. F.; Winie, T.; et al. Ni-rich lithium nickel manganese cobalt oxide cathode materials: a review on the synthesis methods and their electrochemical performances. Heliyon 2024, 10, e23968.
10. Das, D.; Manna, S.; Puravankara, S. Electrolytes, additives and binders for NMC cathodes in Li-ion batteries-a review. Batteries 2023, 9, 193.
11. Wang, Q.; Wang, Z.; Li, X.; Zhu, Y.; Gao, P. Synthesis and characterization of Co-free NMA cathodes for fast charging lithium-ion batteries. J. Alloys. Compd. 2023, 955, 170226.
12. Li, W.; Lee, S.; Manthiram, A. High-Nickel NMA: a cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries. Adv. Mater. 2020, 32, 2002718.
13. Maia, B. A.; Gomes, B. M.; Guerreiro, A. N.; Santos, R. M.; Braga, M. H. Cathodes pinpoints for the next generation of energy storage devices: the LiFePO4 case study. J. Phys. Mater. 2024, 7, 025001.
14. Baptista, M. C.; Gomes, B. M.; Capela, D.; et al. Conditioning solid-state anode-less cells for the next generation of batteries. Batteries 2023, 9, 402.
15. Braga, M. H.; Stockhausen, V.; Oliveira, J. C.; Ferreira, J. A. The role of defects in Li3ClO solid electrolyte: calculations and experiments. MRS. Online. Proceedings. Library. 2013, 1526, 905.
16. Baptista, M. C.; Gomes, B. M.; Vale, A. B.; Braga, M. H. In-series all-solid-state anode-less cells. J. Energy. Storage. 2024, 102, 113983.
17. Li, S.; Meng, X.; Yi, Q.; et al. Structural and electrochemical properties of LiMn0.6Fe0.4PO4 as a cathode material for flexible lithium-ion batteries and self-charging power pack. Nano. Energy. 2018, 52, 510-6.
18. Gu, H.; Li, W.; Li, Q.; et al. Electrochemical properties of Li4Ti5O12 coated LiMn0.6Fe0.4PO4 prepared by rheological phase reaction method. J. Electrochem. Soc. 2024, 171, 040502.
19. Nguyen, M. T.; Pham, H. Q.; Berrocal, J. A.; Gunkel, I.; Steiner, U. An electrolyte additive for the improved high voltage performance of LiNi0.5Mn1.5O4 (LNMO) cathodes in Li-ion batteries. J. Mater. Chem. A. 2023, 11, 7670-8.
20. Jiang, H.; Zeng, C.; Zhu, W.; et al. Boosting cycling stability by regulating surface oxygen vacancies of LNMO by rapid calcination. Nano. Res. 2024, 17, 2671-7.
21. Hofmann, A.; Höweling, A.; Bohn, N.; Müller, M.; Binder, J. R.; Hanemann, T. Additives for cycle life improvement of high-voltage LNMO-based Li-ion cells. ChemElectroChem 2019, 6, 5255-63.
22. Malik, M.; Chan, K. H.; Azimi, G. Review on the synthesis of LiNixMnyCo1-x-yO2 (NMC) cathodes for lithium-ion batteries. Mater. Today. Energy. 2022, 28, 101066.
24. Noerochim, L.; Suwarno, S.; Idris, N. H.; Dipojono, H. K. Recent development of nickel-rich and cobalt-free cathode materials for lithium-ion batteries. Batteries 2021, 7, 84.
25. Xu, C.; Märker, K.; Lee, J.; et al. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 2021, 20, 84-92.
26. Kim, U.; Kuo, L.; Kaghazchi, P.; Yoon, C. S.; Sun, Y. Quaternary layered Ni-rich NCMA cathode for lithium-ion batteries. ACS. Energy. Lett. 2019, 4, 576-82.
27. Emley, B.; Wu, C.; Zhao, L.; et al. Impact of fabrication methods on binder distribution and charge transport in composite cathodes of all-solid-state batteries. Mater. Futures. 2023, 2, 045102.
28. Gomes, B. M.; Ribeiro, M. J. F.; Braga, M. H. A perspective on the building blocks of a solid-state battery: from solid electrolytes to quantum power harvesting and storage. J. Mater. Chem. A. 2024, 12, 690-722.
29. Yu, C.; Ganapathy, S.; Hageman, J.; et al. Facile synthesis toward the optimal structure-conductivity characteristics of the argyrodite Li6PS5Cl solid-state electrolyte. ACS. Appl. Mater. Interfaces. 2018, 10, 33296-306.
30. Nikodimos, Y.; Huang, C.; Taklu, B. W.; Su, W.; Hwang, B. J. Chemical stability of sulfide solid-state electrolytes: stability toward humid air and compatibility with solvents and binders. Energy. Environ. Sci. 2022, 15, 991-1033.
31. Wang, Z.; Xia, J.; Ji, X.; et al. Lithium anode interlayer design for all-solid-state lithium-metal batteries. Nat. Energy. 2024, 9, 251-62.
32. Liu, Y.; Wang, C.; Yoon, S. G.; et al. Aluminum foil negative electrodes with multiphase microstructure for all-solid-state Li-ion batteries. Nat. Commun. 2023, 14, 3975.
33. Zhong, X.; Han, J.; Chen, L.; et al. Binding mechanisms of PVDF in lithium ion batteries. Appl. Surf. Sci. 2021, 553, 149564.
34. Cordner, A.; Brown, P.; Cousins, I. T.; et al. PFAS Contamination in europe: generating knowledge and mapping known and likely contamination with “expert-reviewed” journalism. Environ. Sci. Technol. 2024, 58, 6616-27.
35. Sonne, C.; Jenssen, B. M.; Rinklebe, J.; et al. EU need to protect its environment from toxic per- and polyfluoroalkyl substances. Sci. Total. Environ. 2023, 876, 162770.
36. Singer, C.; Schmalzbauer, S.; Daub, R. Influence of the slurry composition on thin-film components for the wet coating process of sulfide-based all-solid-state batteries. J. Energy. Storage. 2023, 68, 107703.
37. Gao, J.; Hao, J.; Gao, Y.; et al. Scalable wet-slurry fabrication of sheet-type electrodes for sulfide all-solid-state batteries and performance enhancement via optimization of Ni-rich cathode coating layer. eTransportation 2023, 17, 100252.
38. Ruhl, J.; Riegger, L. M.; Ghidiu, M.; Zeier, W. G. Impact of solvent treatment of the superionic argyrodite Li6PS5Cl on solid-state battery performance. Adv. Energy. Sustain. Res. 2021, 2, 2000077.
39. Tan, D. H. S.; Banerjee, A.; Deng, Z.; et al. Enabling thin and flexible solid-state composite electrolytes by the scalable solution process. ACS. Appl. Energy. Mater. 2019, 2, 6542-50.
40. Rolandi, A. C.; de, M. I.; Casado, N.; Forsyth, M.; Mecerreyes, D.; Pozo-gonzalo, C. Unlocking sustainable power: advances in aqueous processing and water-soluble binders for NMC cathodes in high-voltage Li-ion batteries. RSC. Sustain. 2024, 2, 2125-49.
41. Demiryürek, R.; Gürbüz, N.; Hatipoglu, G.; et al. Roll-to-roll manufacturing method of aqueous-processed thick LiNi0.5Mn0.3Co0.2O2 electrodes for lithium-ion batteries. Int. J. Energy. Res. 2021, 45, 21182-94.
42. Surace, Y.; Jahn, M.; Cupid, D. M. The rate capability performance of high-areal-capacity water-based NMC811 electrodes: the role of binders and current collectors. Batteries 2024, 10, 100.
43. Isozumi, H.; Kubota, K.; Tatara, R.; et al. Impact of newly developed styrene-butadiene-rubber binder on the electrode performance of high-voltage LiNi0.5Mn1.5O4 electrode. ACS. Appl. Energy. Mater. 2020, 3, 7978-87.
44. Yabuuchi, N.; Kinoshita, Y.; Misaki, K.; Matsuyama, T.; Komaba, S. Electrochemical properties of LiCoO2 electrodes with latex binders on high-voltage exposure. J. Electrochem. Soc. 2015, 162, A538.
45. Wu, Q.; Ha, S.; Prakash, J.; Dees, D. W.; Lu, W. Investigations on high energy lithium-ion batteries with aqueous binder. Electrochim. Acta. 2013, 114, 1-6.
46. Kasnatscheew, J.; Börner, M.; Streipert, B.; et al. Lithium ion battery cells under abusive discharge conditions: electrode potential development and interactions between positive and negative electrode. J. Power. Sources. 2017, 362, 278-82.
47. Dose, W. M.; Xu, C.; Grey, C. P.; De, V. M. F. Effect of anode slippage on cathode cutoff potential and degradation mechanisms in Ni-rich Li-ion batteries. Cell. Rep. Phys. Sci. 2020, 1, 100253.
48. Zhang, S. S. The effect of the charging protocol on the cycle life of a Li-ion battery. J. Power. Sources. 2006, 161, 1385-91.
49. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993, 47, 558.
50. Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 1992, 45, 13244-9.
51. Trasatti, S. The absolute electrode potential: an explanatory note (Recommendations 1986). Pure. Appl. Chem. 1986, 58, 955-66.
52. Nipan, G. D. Isobaric-isothermal polyhedra of solid solutions in the Li-Ni-Mn-Co-O system. Inorg. Mater. 2021, 57, 518-23.
53. Walther, F.; Koerver, R.; Fuchs, T.; et al. Visualization of the interfacial decomposition of composite cathodes in argyrodite-based all-solid-state batteries using time-of-flight secondary-ion mass spectrometry. Chem. Mater. 2019, 31, 3745-55.
54. Taklu, B. W.; Su, W.; Nikodimos, Y.; et al. Dual CuCl doped argyrodite superconductor to boost the interfacial compatibility and air stability for all solid-state lithium metal batteries. Nano. Energy. 2021, 90, 106542.
55. Li, X.; Chang, K.; Abbas, S. M.; et al. Silver nanocoating of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries. Micromachines 2023, 14, 907.
56. Byeon, Y.; Yang, S.; Yang, G.; et al. Conductive carbon embedded beneath cathode active material for longevity of solid-state batteries. J. Mater. Chem. A. 2024, 12, 8359-69.
57. Jung, Y. H.; Lim, C. H.; Kim, D. K. Graphene-supported Na3V2(PO4)3 as a high rate cathode material for sodium-ion batteries. J. Mater. Chem. A. 2013, 1, 11350-4.
58. Araño, K. G.; Yang, G.; Armstrong, B. L.; et al. Carbon coating influence on the formation of percolating electrode networks for silicon anodes. ACS. Appl. Energy. Mater. 2023, 6, 11308-21.
59. Nam, J. S.; To, A. R. W.; Lee, S. H.; et al. Densification and charge transport characterization of composite cathodes with single-crystalline LiNi0.8Co0.15Al0.05O2 for solid-state batteries. Energy. Storage. Mater. 2022, 46, 155-64.