REFERENCES

1. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-7.

2. He, W.; Zhuang, Y.; Mei, J.; et al. In situ induced lattice-matched interfacial oxygen-passivation-layer endowing Li-rich and Mn-based cathodes with ultralong life. Small 2022, 18, e2200942.

3. Yang, X.; Wang, S.; Han, D.; et al. Structural origin of suppressed voltage decay in single-crystalline Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathodes. Small 2022, 18, e2201522.

4. Yu, Z.; Lu, Q.; Wang, Y.; et al. Self-compacting engineering to achieve high-performance lithium-rich layered oxides cathode materials. Appl. Surf. Sci. 2023, 619, 156683.

5. Yu, Z.; Yu, K.; Ji, F.; et al. Enhancing the cycling stability of a hollow architecture Li-rich cathode via Ce-integrated surface/interface/doping engineering. Inorg. Chem. Front. 2023, 10, 682-91.

6. Wang, T.; Zeng, W.; Zhu, J.; et al. SeO2-infused grain boundaries effectively improve rate and stability performance of Li-rich manganese-based layered cathode materials. Nano. Energy. 2023, 113, 108577.

7. Xu, Z.; Guo, X.; Wang, J.; et al. Restraining the octahedron collapse in lithium and manganese rich NCM cathode toward suppressing structure transformation. Adv. Energy. Mater. 2022, 12, 2201323.

8. Liang, C.; Cheng, Y.; Lv, C.; et al. Surface oxygen-locked LiNi0.6Mn0.4O2: towards stable cycling at 4.7 V. Energy. Storage. Mater. 2025, 75, 104087.

9. Assat, G.; Foix, D.; Delacourt, C.; Iadecola, A.; Dedryvère, R.; Tarascon, J. M. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes. Nat. Commun. 2017, 8, 2219.

10. Sun, Z.; Xu, L.; Dong, C.; et al. A facile gaseous sulfur treatment strategy for Li-rich and Ni-rich cathode materials with high cycling and rate performance. Nano. Energy. 2019, 63, 103887.

11. Hao, Y.; Li, X.; Liu, W.; et al. Interfacial Mn vacancy for Li-rich Mn-based oxide cathodes. ACS. Appl. Mater. Interfaces. 2022, 14, 22161-9.

12. He, J.; Ma, H.; Zhang, H.; et al. Promoting the electrochemical performance of Li-rich layered Li1.2(Ni1/6Co1/6Mn4/6)0.8O2 with the in situ transformed allogenic spinel phase. ACS. Sustain. Chem. Eng. 2020, 8, 2215-25.

13. Yang, C.; Wang, H.; Wei, Z.; et al. One-step simultaneous construction of oxygen vacancies and Mo-O bonds to enhance the cyclic stability of lithium-rich manganese-based layered oxides. J. Alloys. Compd. 2025, 1010, 178267.

14. Wang, K.; Qiu, J.; Hou, F.; et al. Unraveling the role of surficial oxygen vacancies in stabilizing Li-rich layered oxides. Adv. Energy. Mater. 2023, 13, 2301216.

15. Guo, W.; Zhang, Y.; Lin, L.; et al. Enhancing cycling stability in Li-rich Mn-based cathode materials by solid-liquid-gas integrated interface engineering. Nano. Energy. 2022, 97, 107201.

16. Yang, Y.; Gao, C.; Luo, T.; et al. Unlocking the potential of Li-rich Mn-based oxides for high-rate rechargeable lithium-ion batteries. Adv. Mater. 2023, 35, e2307138.

17. Li, X.; Yu, F.; Ke, W.; et al. Modulating local electronic structure enhances superior electrochemical activity in Li-rich oxide cathodes. J. Mater. Chem. A. 2023, 11, 2252-61.

18. Kim, S. Y.; Park, C. S.; Hosseini, S.; Lampert, J.; Kim, Y. J.; Nazar, L. F. Inhibiting oxygen release from Li-rich, Mn-rich layered oxides at the surface with a solution processable oxygen scavenger polymer. Adv. Energy. Mater. 2021, 11, 2100552.

19. Wen, X.; Yin, C.; Qiu, B.; et al. Controls of oxygen-partial pressure to accelerate the electrochemical activation in Co-free Li-rich layered oxide cathodes. J. Power. Sources. 2022, 523, 231022.

20. Jiang, W.; Zhang, C.; Feng, Y.; et al. Achieving high structure and voltage stability in cobalt-free Li-rich layered oxide cathodes via selective dual-cation doping. Energy. Storage. Mater. 2020, 32, 37-45.

21. Feng, Z.; Song, H.; Li, Y.; Lyu, Y.; Xiao, D.; Guo, B. Adjusting oxygen redox reaction and structural stability of Li- and Mn-rich cathodes by Zr-Ti dual-doping. ACS. Appl. Mater. Interfaces. 2022, 14, 5308-17.

22. Su, Y.; Zhao, J.; Dong, J.; et al. Atomic pins bridging integrated surface to assist high-rate stability for Co-free Li-rich cathode. Chem. Eng. J. 2023, 475, 145991.

23. Li, S.; Yang, L.; Liu, Z.; et al. Surface Al-doping for compromise between facilitating oxygen redox and enhancing structural stability of Li-rich layered oxide. Energy. Storage. Mater. 2023, 55, 356-63.

24. Zhang, K.; Sheng, H.; Wu, X.; et al. Improving electrochemical properties by sodium doping for lithium-rich layered oxides. ACS. Appl. Energy. Mater. 2020, 3, 8953-9.

25. Cheng, W.; Ding, J.; Liu, Z.; et al. Zn/Ti dual concentration-gradients surface doping to improve the stability and kinetics for Li-rich layered oxides cathode. Chem. Eng. J. 2023, 451, 138678.

26. Wang, E.; Xiao, D.; Wu, T.; et al. Al/Ti synergistic doping enhanced cycle stability of Li-rich layered oxides. Adv. Funct. Mater. 2022, 32, 2201744.

27. Luo, D.; Ding, X.; Fan, J.; et al. Accurate control of initial coulombic efficiency for lithium-rich manganese-based layered oxides by surface multicomponent integration. Angew. Chem. Int. Ed. 2020, 59, 23061-6.

28. Tan, Z.; Li, Y.; Xi, X.; et al. A novelty strategy induced pinning effect and defect structure in Ni-rich layered cathodes towards boosting its electrochemical performance. J. Energy. Chem. 2022, 72, 570-80.

29. Marie, J. J.; House, R. A.; Rees, G. J.; et al. Trapped O2 and the origin of voltage fade in layered Li-rich cathodes. Nat. Mater. 2024, 23, 818-25.

30. Yan, C.; Shao, Q.; Yao, Z.; et al. Multifunctional surface construction for long-term cycling stability of Li-rich Mn-based layered oxide cathode for Li-ion batteries. Small 2022, 18, e2107910.

31. Zhang, G.; Chen, M.; Li, C.; et al. Surface spinel and interface oxygen vacancies enhanced lithium-rich layered oxides with excellent electrochemical performances. Chem. Eng. J. 2022, 443, 136434.

32. Liu, Y.; Zhu, H.; Zhu, H.; et al. Modulating the surface ligand orientation for stabilized anionic redox in Li-rich oxide cathodes. Adv. Energy. Mater. 2021, 11, 2003479.

33. Zheng, H.; Zhang, C.; Zhang, Y.; et al. Manipulating the local electronic structure in Li-Rich layered cathode towards superior electrochemical performance. Adv. Funct. Mater. 2021, 31, 2100783.

34. Mo, S.; Zhang, B.; Zhang, K.; Li, S.; Pan, F. LiAl5O8 as a potential coating material in lithium-ion batteries: a first principles study. Phys. Chem. Chem. Phys. 2019, 21, 13758-65.

35. Wu, Y.; Lei, D.; Wang, C. The formation of LiAl5O8 nanowires from bulk Li-Al alloy enables dendrite-free Li metal batteries. Mater. Today. Phys. 2021, 18, 100395.

36. Aykol, M.; Kim, S.; Hegde, V. I.; et al. High-throughput computational design of cathode coatings for Li-ion batteries. Nat. Commun. 2016, 7, 13779.

37. Li, Z.; Li, Y.; Zhang, M.; et al. Modifying Li@Mn6 Superstructure units by Al substitution to enhance the long-cycle performance of Co-free Li-rich cathode. Adv. Energy. Mater. 2021, 11, 2101962.

38. Zhang, C.; Wei, B.; Wang, M.; et al. Regulating oxygen covalent electron localization to enhance anionic redox reversibility of lithium-rich layered oxide cathodes. Energy. Storage. Mater. 2022, 46, 512-22.

39. Li, Z.; Tian, F.; Li, Y.; Lei, D.; Wang, C. Zero-strain insertion anode material of lithium-ion batteries. Small 2022, 18, e2204875.

40. Zhang, Y.; Zheng, S.; Meng, C.; et al. A near-surface structure reconfiguration strategy to regulate Mn3+/Mn4+and O2-/O2n- redox for stabilizing lithium-rich oxide cathode. Adv. Funct. Mater. 2023, 33, 2300987.

41. Liu, P.; Zhang, H.; He, W.; et al. Lithium deficiencies engineering in Li-rich layered oxide Li1.098Mn0.533Ni0.113Co0.138O2 for high-stability cathode. J. Am. Chem. Soc. 2019, 141, 10876-82.

42. Rosina, K. J.; Jiang, M.; Zeng, D.; Salager, E.; Best, A. S.; Grey, C. P. Structure of aluminum fluoride coated Li[Li1/9Ni1/3Mn5/9]O2 cathodes for secondary lithium-ion batteries. J. Mater. Chem. 2012, 22, 20602.

43. Yu, R.; Banis, M. N.; Wang, C.; et al. Tailoring bulk Li+ ion diffusion kinetics and surface lattice oxygen activity for high-performance lithium-rich manganese-based layered oxides. Energy. Storage. Mater. 2021, 37, 509-20.

44. Singh, V.; Chakradhar, R.; Rao, J.; Kwak, H. Characterization, EPR and photoluminescence studies of LiAl5O8:Cr phosphors. Solid. State. Sci. 2009, 11, 870-4.

45. Singh, V.; Chakradhar, R.; Rao, J.; Kim, D. EPR and luminescence properties of combustion synthesized LiAl5O8:Mn phosphors. Mater. Chem. Phys. 2008, 110, 43-51.

46. Li, S.; Li, H.; Zhang, H.; Zhang, S.; Lai, Y.; Zhang, Z. Constructing stable surface structures enabling fast charging for Li-rich layered oxide cathodes. Chem. Eng. J. 2022, 427, 132036.

47. Li, Z.; Li, H.; Cao, S.; et al. Reversible anionic redox and spinel-layered coherent structure enable high-capacity and long-term cycling of Li-rich cathode. Chem. Eng. J. 2023, 452, 139041.

48. Cao, J.; Huang, H.; Qu, Y.; Tang, W.; Yang, Z.; Zhang, W. Construction of a hetero-epitaxial nanostructure at the interface of Li-rich cathode materials to boost their rate capability and cycling performances. Nanoscale 2021, 13, 20488-97.

49. Mohapatra, M.; Seshadri, M.; Naik, Y. P.; Meena, G.; Kadam, R. M.; Singh, V. Radiative properties of ‘intense’ red emitting LiAl5O8:Eu phosphors. J. Mater. Sci. Mater. Electron. 2018, 29, 7778-84.

50. Yu, H.; Ibrahim, K. B.; Chi, P.; et al. Modulating the voltage decay and cationic redox kinetics of Li-rich cathodes via controlling the local electronic structure. Adv. Funct. Mater. 2022, 32, 2112394.

51. Xu, G.; Ke, W.; Yu, F.; et al. Modulation of lattice oxygen boosts the electrochemical activity and stability of Co-free Li-rich cathodes. J. Energy. Chem. 2022, 75, 117-26.

52. Zhang, X.; Belharouak, I.; Li, L.; et al. Structural and electrochemical study of Al2O3 and TiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD. Adv. Energy. Mater. 2013, 3, 1299-307.

53. Lu, Q.; Wang, Y.; Yu, K.; Zhao, G.; Cheng, Y.; Yu, Z. One-step constructed oxygen vacancies and Fe-doping to improve the electrochemical performance of Li-rich Mn-based cathode. J. Alloys. Compd. 2023, 937, 168426.

54. Liu, Y.; Chen, Y.; Wang, J.; et al. Hierarchical yolk-shell structured Li-rich cathode boosting cycling and voltage stabled LIBs. Nano. Res. 2022, 15, 3178-86.

55. Zhang, P.; Zhai, X.; Huang, H.; et al. Synergistic Na+ and F- co-doping modification strategy to improve the electrochemical performance of Li-rich Li1·20Mn0·54Ni0·13Co0·13O2 cathode. Ceram. Int. 2020, 46, 24723-36.

56. Liu, Y.; Yang, Z.; Zhong, J.; et al. Surface-functionalized coating for lithium-rich cathode material to achieve ultra-high rate and excellent cycle performance. ACS. Nano. 2019, 13, 11891-900.

57. Liu, J.; Wu, Z.; Yu, M.; et al. Building homogenous Li2TiO3 coating layer on primary particles to stabilize Li-rich Mn-based cathode materials. Small 2022, 18, e2106337.

58. Zhang, B.; Zhang, Y.; Wang, X.; et al. Role of substitution elements in enhancing the structural stability of Li-rich layered cathodes. J. Am. Chem. Soc. 2023, 145, 8700-13.

59. Sun, G.; Yu, F.; Zhao, C.; et al. Decoupling the voltage hysteresis of Li-rich cathodes: electrochemical monitoring, modulation anionic redox chemistry and theoretical verifying. Adv. Funct. Mater. 2021, 31, 2002643.

60. Charbonneau, V.; Lasia, A.; Brisard, G. Impedance studies of Li+ diffusion in nickel manganese cobalt oxide (NMC) during charge/discharge cycles. J. Electroanal. Chem. 2020, 875, 113944.

61. Zhang, Y.; Shi, X.; Zheng, S.; et al. Alternate heterogeneous superlattice control of lattice strain to stabilize Li-rich cathode. Energy. Environ. Sci. 2023, 16, 5043-51.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/