REFERENCES
1. Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210-1.
2. Dong, S.; Lv, N.; Wu, Y.; Zhu, G.; Dong, X. Lithium-ion and sodium-ion hybrid capacitors: from insertion-type materials design to devices construction. Adv. Funct. Mater. 2021, 31, 2100455.
3. Raza, W.; Ali, F.; Raza, N.; et al. Recent advancements in supercapacitor technology. Nano. Energy. 2018, 52, 441-73.
4. Yuan, X.; Yuan, X.; Zhang, S.; et al. An aqueous rechargeable Al-ion battery based on cobalt hexacyanoferrate and Al metal. Adv. Energy. Mater. 2024, 14, 2302712.
5. Wang, H.; Zhu, C.; Chao, D.; Yan, Q.; Fan, H. J. Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv. Mater. 2017, 29, 1702093.
6. Eshetu, G. G.; Elia, G. A.; Armand, M.; et al. Electrolytes and interphases in sodium-based rechargeable batteries: recent advances and perspectives. Adv. Energy. Mater. 2020, 10, 2000093.
7. Ponrouch, A.; Monti, D.; Boschin, A.; Steen, B.; Johansson, P.; Palacín, M. R. Non-aqueous electrolytes for sodium-ion batteries. J. Mater. Chem. A. 2015, 3, 22-42.
8. Jónsson, E.; Johansson, P. Modern battery electrolytes: ion-ion interactions in Li+/Na+ conductors from DFT calculations. Phys. Chem. Chem. Phys. 2012, 14, 10774-9.
9. Okoshi, M.; Yamada, Y.; Yamada, A.; Nakai, H. Theoretical analysis on de-solvation of lithium, sodium, and magnesium cations to organic electrolyte solvents. J. Electrochem. Soc. 2013, 160, A2160-5.
10. Lu, Z.; Yin, X.; Ji, Y.; et al. Modulating the graphitic domains of hard carbons via tuning resin crosslinking degree to achieve high rate and stable sodium storage. Energy. Mater. 2024, 4, 400038.
11. Wang, Z.; Feng, X.; Bai, Y.; et al. Probing the energy storage mechanism of quasi-metallic na in hard carbon for sodium-ion batteries. Adv. Energy. Mater. 2021, 11, 2003854.
12. Sun, N.; Qiu, J.; Xu, B. Understanding of sodium storage mechanism in hard carbons: ongoing development under debate. Adv. Energy. Mater. 2022, 12, 2200715.
13. Bouibes, A.; Takenaka, N.; Fujie, T.; Kubota, K.; Komaba, S.; Nagaoka, M. Concentration effect of fluoroethylene carbonate on the formation of solid electrolyte interphase layer in sodium-ion batteries. ACS. Appl. Mater. Interfaces. 2018, 10, 28525-32.
14. Xia, H.; Zan, L.; Qu, G.; et al. Evolution of a solid electrolyte interphase enabled by FeNX/C catalysts for sodium-ion storage. Energy. Environ. Sci. 2022, 15, 771-9.
15. Yi, X.; Li, X.; Zhong, J.; et al. Unraveling the mechanism of different kinetics performance between ether and carbonate ester electrolytes in hard carbon electrode. Adv. Funct. Mater. 2022, 32, 2209523.
16. Yang, J.; Ruan, J.; Li, Q.; et al. Improved low-temperature performance of rocking-chair sodium-ion hybrid capacitor by mitigating the de-solvation energy and interphase resistance. Adv. Funct. Mater. 2022, 32, 2200566.
17. Yan, L.; Zhang, G.; Wang, J.; et al. Revisiting electrolyte kinetics differences in sodium ion battery: are esters really inferior to ethers? Energy. Environ. Mater. 2023, 6, e12523.
18. Kang, H. J.; Huh, Y. S.; Im, W. B.; Jun, Y. S. Molecular cooperative assembly-mediated synthesis of ultra-high-performance hard carbon anodes for dual-carbon sodium hybrid capacitors. ACS. Nano. 2019, 13, 11935-46.
19. Wang, C.; Zhao, N.; Li, B.; et al. Pseudocapacitive porous hard carbon anode with controllable pyridinic nitrogen and thiophene sulfur co-doping for high-power dual-carbon sodium ion hybrid capacitors. J. Mater. Chem. A. 2021, 9, 20483-92.
20. Wang, E.; Wan, J.; Guo, Y. J.; et al. Mitigating electron leakage of solid electrolyte interface for stable sodium-ion batteries. Angew. Chem. Int. Ed. 2023, 62, e202216354.
21. Lv, Z.; Li, T.; Hou, X.; et al. Solvation structure and solid electrolyte interface engineering for excellent Na+ storage performances of hard carbon with the ether-based electrolytes. Chem. Eng. J. 2022, 430, 133143.
22. Yang, J.; Long, K.; Guo, Z.; et al. Synergetic modulation on solvation structure and electrode interface to achieve lithium-ion batteries cycled at ultra-low temperature. Chem. Eng. J. 2023, 473, 145455.
23. Shen, C.; Wang, C.; Jin, T.; Zhang, X.; Jiao, L.; Xie, K. Tailoring the surface chemistry of hard carbon towards high-efficiency sodium ion storage. Nanoscale 2022, 14, 8959-66.
24. Lee, C. R.; Jang, H. Y.; Leem, H. J.; et al. Surface work function-induced thermally vulnerable solid electrolyte interphase formation on the negative electrode for lithium-ion batteries. Adv. Energy. Mater. 2024, 14, 2302906.
25. Tu, S.; Zhang, B.; Zhang, Y.; et al. Fast-charging capability of graphite-based lithium-ion batteries enabled by Li3P-based crystalline solid-electrolyte interphase. Nat. Energy. 2023, 8, 1365-74.
26. Huo, J.; Xiao, Y.; Yang, H.; Yue, G.; Fang, Y.; Guo, S. Ultrasmall TiO2/C nanoparticles with oxygen vacancy-enriched as an anode material for advanced Li-ion hybrid capacitors. J. Energy. Storage. 2024, 89, 111586.
27. Peng, Y.; Liu, H.; Li, Y.; Song, Y.; Zhang, C.; Wang, G. Embedding Co3O4 nanoparticles in three-dimensionally ordered macro-/mesoporous TiO2 for Li-ion hybrid capacitor. J. Colloid. Interface. Sci. 2021, 596, 130-8.
28. Jiang, Y.; Wang, H.; Dong, J.; et al. Mo2C nanoparticles embedded in carbon nanowires with surface pseudocapacitance enables high-energy and high-power sodium ion capacitors. Small 2022, 18, e2200805.
29. Yang, Y.; Ma, Y.; Wang, X.; Gao, Z.; Yu, J.; Liu, T. In-situ evolution of CoS/C hollow nanocubes from metal-organic frameworks for sodium-ion hybrid capacitors. Chem. Eng. J. 2023, 455, 140610.
30. Dong, Y.; He, K.; Yin, L.; Zhang, A. A facile route to controlled synthesis of Co3O4 nanoparticles and their environmental catalytic properties. Nanotechnology 2007, 18, 435602.
31. Huang, S.; Yang, L.; Xu, G.; et al. Hollow Co3O4@N-doped carbon nanocrystals anchored on carbon nanotubes for freestanding anode with superior Li/Na storage performance. Chem. Eng. J. 2021, 415, 128861.
32. Yin, X.; Yin, Y.; Wang, N.; et al. Facile fabrication of a series of Cu-doped Co3O4 with controlled morphology for alkali metal-ion batteries. Colloids. Surf. A. 2023, 656, 130459.
33. Ma, M.; Cai, H.; Xu, C.; et al. Engineering solid electrolyte interface at nano-scale for high-performance hard carbon in sodium-ion batteries. Adv. Funct. Mater. 2021, 31, 2100278.
34. Liu, M.; Wu, F.; Gong, Y.; et al. Interfacial-catalysis-enabled layered and inorganic-rich SEI on hard carbon anodes in ester electrolytes for sodium-ion batteries. Adv. Mater. 2023, 35, e2300002.
35. Song, G.; Yi, Z.; Su, F.; et al. Boosting the low-temperature performance for Li-ion batteries in LiPF6-based local high-concentration electrolyte. ACS. Energy. Lett. 2023, 8, 1336-43.
36. Lu, Z.; Geng, C.; Yang, H.; et al. Step-by-step desolvation enables high-rate and ultra-stable sodium storage in hard carbon anodes. Proc. Natl. Acad. Sci. USA. 2022, 119, e2210203119.
37. Huang, X.; Wang, M.; Wang, Q.; et al. Acceleration of interfacial kinetics induced by regulation of Li+ desolvation process in lithium metal-based batteries. J. Power. Sources. 2024, 592, 233884.
38. Yang, G.; Ivanov, I. N.; Ruther, R. E.; et al. Electrolyte solvation structure at solid-liquid interface probed by nanogap surface-enhanced raman spectroscopy. ACS. Nano. 2018, 12, 10159-70.
39. Cai, T.; Sun, Q.; Cao, Z.; et al. Electrolyte additive-controlled interfacial models enabling stable antimony anodes for lithium-ion batteries. J. Phys. Chem. C. 2022, 126, 20302-13.
40. Umesh, B.; Chandra, R. P.; Hernandha, R. F. H.; et al. Moderate-concentration fluorinated electrolyte for high-energy-density Si//LiNi0.8Co0.1Mn0.1O2 batteries. ACS. Sustain. Chem. Eng. 2020, 8, 16252-61.
41. Hai, F.; Yi, Y.; Guo, J.; et al. Indirect regulation of solvation structure in all-fluorinated electrolyte by introducing carboxylate for stable 5 V battery. Chem. Eng. J. 2023, 472, 144993.
42. Pham, T. D.; Bin, F. A.; Nguyen, H. D.; Oh, H. M.; Lee, K. Enhanced performances of lithium metal batteries by synergistic effect of low concentration bisalt electrolyte. J. Mater. Chem. A. 2022, 10, 12035-46.
43. Li, W.; Guo, X.; Song, K.; et al. Binder-induced ultrathin SEI for defect-passivated hard carbon enables highly reversible sodium-ion storage. Adv. Energy. Mater. 2023, 13, 2300648.
44. Spotte-smith, E. W. C.; Petrocelli, T. B.; Patel, H. D.; Blau, S. M.; Persson, K. A. Elementary decomposition mechanisms of lithium hexafluorophosphate in battery electrolytes and interphases. ACS. Energy. Lett. 2023, 8, 347-55.
45. Li, Z.; Li, Y.; Bi, C.; et al. Construction of organic-rich solid electrolyte interphase for long-cycling lithium-sulfur batteries. Adv. Funct. Mater. 2024, 34, 2304541.
46. Lu, Y.; Zhang, W.; Liu, S.; et al. Tuning the Li+ solvation structure by a "bulky coordinating" strategy enables nonflammable electrolyte for ultrahigh voltage lithium metal batteries. ACS. Nano. 2023, 17, 9586-99.
47. Eshetu, G. G.; Diemant, T.; Hekmatfar, M.; et al. Impact of the electrolyte salt anion on the solid electrolyte interphase formation in sodium ion batteries. Nano. Energy. 2019, 55, 327-40.