REFERENCES
1. Dey, S. C.; Worfolk, B.; Lower, L.; et al. Phenolic resin derived hard carbon anode for sodium-ion batteries: a review. ACS. Energy. Lett. 2024, 9, 2590-614.
2. Tang, Y.; Zhang, Y.; Li, W.; Ma, B.; Chen, X. Rational material design for ultrafast rechargeable lithium-ion batteries. Chem. Soc. Rev. 2015, 44, 5926-40.
3. Li, X.; Ye, W.; Xu, P.; et al. An encapsulation-based sodium storage via Zn-single-atom implanted carbon nanotubes. Adv. Mater. 2022, 34, 2202898.
4. Hong, W.; Zhang, Y.; Yang, L.; et al. Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage. Nano. Energy. 2019, 65, 104038.
5. Zia, A. W.; Rasul, S.; Asim, M.; Samad, Y. A.; Shakoor, R. A.; Masood, T. The potential of plasma-derived hard carbon for sodium-ion batteries. J. Energy. Storage. 2024, 84, 110844.
6. Lu, Z.; Yin, X.; Ji, Y.; et al. Modulating the graphitic domains of hard carbons via tuning resin crosslinking degree to achieve high rate and stable sodium storage. Energy. Mater. 2024, 4, 400038.
7. Wang, R.; Qin, J.; Pei, F.; et al. Ni single atoms on hollow nanosheet assembled carbon flowers optimizing polysulfides conversion for Li-S batteries. Adv. Funct. Mater. 2023, 33, 2305991.
8. Liu, F.; Meng, J.; Jiang, G.; et al. Coordination engineering of metal single atom on carbon for enhanced and robust potassium storage. Matter 2021, 4, 4006-21.
9. Shi, C.; Liu, Y.; Qi, R.; et al. Hierarchical N-doped carbon spheres anchored with cobalt nanocrystals and single atoms for oxygen reduction reaction. Nano. Energy. 2021, 87, 106153.
10. Zhang, S.; Yang, W.; Liang, Y.; Yang, X.; Cao, M.; Cao, R. Template-free synthesis of non-noble metal single-atom electrocatalyst with N-doped holey carbon matrix for highly efficient oxygen reduction reaction in zinc-air batteries. Appl. Catal. B. Environ. 2021, 285, 119780.
11. Fei, H.; Dong, J.; Chen, D.; et al. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 2019, 48, 5207-41.
12. Li, Y.; Kong, M.; Hu, J.; Zhou, J. Carbon-microcuboid-supported phosphorus-coordinated single atomic copper with ultrahigh content and its abnormal modification to Na storage behaviors. Adv. Energy. Mater. 2020, 10, 2000400.
13. Zhang, D.; Ma, X.; Wu, L.; et al. Coupling low-tortuosity carbon matrix with single-atom chemistry enables dendrite-free potassium-metal anode. Adv. Energy. Mater. 2023, 13, 2203277.
14. Qiu, D.; Zhao, W.; Zhang, B.; et al. Ni-single atoms modification enabled kinetics enhanced and ultra-stable hard carbon anode for sodium-ion batteries. Adv. Energy. Mater. 2024, 14, 2400002.
15. Lu, Z.; Wang, J.; Feng, W.; et al. Zinc single-atom-regulated hard carbons for high-rate and low-temperature sodium-ion batteries. Adv. Mater. 2023, 35, 2211461.
16. Ding, G.; Li, Z.; Wei, L.; et al. Regulating the sodium storage sites in nitrogen-doped carbon materials by sulfur-doping engineering for sodium ion batteries. Electrochim. Acta. 2022, 424, 140645.
17. Xu, Q.; Li, Y.; Wu, C.; et al. Kinetically accelerated and high-mass loaded lithium storage enabled by atomic iron embedded carbon nanofibers. Nano. Res. 2022, 15, 6176-83.
18. Xue, Y.; Li, Y.; Luo, G.; Shi, K.; Liu, E.; Zhou, J. Using a dynamic inhibition concept to achieve content-controllable synthesis of N-coordinated Cu atoms as reversible active site toward super Li-ion capacitors. Adv. Energy. Mater. 2020, 10, 2002644.
19. Han, Y.; Duan, H.; Zhou, C.; et al. Stabilizing cobalt single atoms via flexible carbon membranes as bifunctional electrocatalysts for binder-free zinc-air batteries. Nano. Lett. 2022, 22, 2497-505.
20. Wang, X.; Wang, Y.; Cui, L.; et al. Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chin. Chem. Lett. 2024, 35, 110031.
21. Wang, H.; Chuai, H.; Chen, X.; Lin, J.; Zhang, S.; Ma, X. Self-supported porous carbon nanofibers decorated with single Ni atoms for efficient CO2 electroreduction. ACS. Appl. Mater. Interfaces. 2023, 15, 1376-83.
22. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996, 54, 11169.
23. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.
24. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999, 59, 1758.
26. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
27. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901-4.
28. Hardwick, L.; Buqa, H.; Novak, P. Graphite surface disorder detection using in situ Raman microscopy. Solid. State. Ionics. 2006, 177, 2801-6.
29. Xie, J.; Li, J.; Li, X.; et al. Ultrahigh “relative energy density” and mass loading of carbon cloth anodes for K-ion batteries. CCS. Chem. 2021, 3, 791-9.
30. Zhang, Z.; Sun, J.; Wang, F.; Dai, L. Efficient oxygen reduction reaction (ORR) Catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew. Chem. Int. Ed. 2018, 57, 9038-43.
31. Ren, H.; Wang, Y.; Yang, Y.; et al. Fe/N/C nanotubes with atomic Fe sites: a highly active cathode catalyst for alkaline polymer electrolyte fuel cells. ACS. Catal. 2017, 7, 6485-92.
32. Gao, L.; Zhang, G.; Cai, J.; Huang, L.; Zhou, J.; Zhang, L. Rationally exfoliating chitin into 2D hierarchical porous carbon nanosheets for high-rate energy storage. Nano. Res. 2020, 13, 1604-13.
33. Sun, X.; Tuo, Y.; Ye, C.; et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem. Int. Ed. 2021, 60, 23614-8.
34. Zhuang, Z.; Liu, C.; Yan, Y.; Ma, P.; Tan, D. Q. Zn-CxNy nanoparticle arrays derived from a metal-organic framework for ultralow-voltage hysteresis and stable Li metal anodes. J. Mater. Chem. A. 2021, 9, 27095-101.
35. Wang, T.; Sang, X.; Zheng, W.; et al. Gas diffusion strategy for inserting atomic iron sites into graphitized carbon supports for unusually high-efficient CO2 electroreduction and high-performance Zn-CO2 batteries. Adv. Mater. 2020, 32, 2002430.
36. Ni, W.; Liu, Z.; Zhang, Y.; et al. Electroreduction of carbon dioxide driven by the intrinsic defects in the carbon plane of a single Fe-N4 site. Adv. Mater. 2021, 33, 2003238.
37. Xiao, M.; Xing, Z.; Jin, Z.; et al. Preferentially engineering FeN4 edge sites onto graphitic nanosheets for highly active and durable oxygen electrocatalysis in rechargeable Zn-air batteries. Adv. Mater. 2020, 32, 2004900.
38. Yu, D.; Ma, Y.; Hu, F.; et al. Dual-sites coordination engineering of single atom catalysts for flexible metal-air batteries. Adv. Energy. Mater. 2021, 11, 2101242.
39. Xue, C.; Zhao, J.; Liu, Y.; Li, X.; Zhang, J.; Zhang, J. Regulating the shell thickness of nitrogen-doped hollow carbon nanospheres for enhanced electrochemical performance. Ceram. Int. 2023, 49, 5102-9.
40. Tang, Z.; Zhou, S.; Huang, Y.; et al. Improving the initial coulombic efficiency of carbonaceous materials for Li/Na-ion batteries: origins, solutions, and perspectives. Electrochem. Energy. Rev. 2023, 6, 8.
41. Li, X.; Xue, C.; Liu, Y.; Zhao, J.; Zhang, J.; Zhang, J. Amorphous structure and sulfur doping synergistically inducing defect-rich short carbon nanotubes as a superior anode material in lithium-ion batteries. Electrochim. Acta. 2023, 440, 141697.