REFERENCES
1. International Energy Agency (IEA), Paris, Global EV outlook 2024. Available from: https://www.iea.org/reports/global-ev-outlook-2024. [Last accessed on 14 Apr 2025].
2. Miao, Y.; Hynan, P.; von, J. A.; Yokochi, A. Current Li-ion battery technologies in electric vehicles and opportunities for advancements. Energies 2019, 12, 1074.
3. Cholewinski, A.; Si, P.; Uceda, M.; Pope, M.; Zhao, B. Polymer binders: characterization and development toward aqueous electrode fabrication for sustainability. Polymers 2021, 13, 631.
4. Liu, Y.; Zhang, R.; Wang, J.; Wang, Y. Current and future lithium-ion battery manufacturing. iScience 2021, 24, 102332.
5. Lestriez, B. Functions of polymers in composite electrodes of lithium ion batteries. C. R. Chim. 2010, 13, 1341-50.
6. Lopez, C. G.; Rogers, S. E.; Colby, R. H.; Graham, P.; Cabral, J. T. Structure of sodium carboxymethyl cellulose aqueous solutions: a SANS and rheology study. J. Polym. Sci. B. Polym. Phys. 2015, 53, 492-501.
7. Lopez, C. G.; Colby, R. H.; Cabral, J. T. Electrostatic and hydrophobic interactions in NaCMC aqueous solutions: effect of degree of substitution. Macromolecules 2018, 51, 3165-75.
8. Lee, J.; Paik, U.; Hackley, V. A.; Choi, Y. Effect of carboxymethyl cellulose on aqueous processing of natural graphite negative electrodes and their electrochemical performance for lithium batteries. J. Electrochem. Soc. 2005, 152, A1763.
9. Lim, S.; Ahn, K. H.; Yamamura, M. Latex migration in battery slurries during drying. Langmuir 2013, 29, 8233-44.
10. Gordon, R.; Orias, R.; Willenbacher, N. Effect of carboxymethyl cellulose on the flow behavior of lithium-ion battery anode slurries and the electrical as well as mechanical properties of corresponding dry layers. J. Mater. Sci. 2020, 55, 15867-81.
11. Jaiser, S.; Kumberg, J.; Klaver, J.; et al. Microstructure formation of lithium-ion battery electrodes during drying - an ex-situ study using cryogenic broad ion beam slope-cutting and scanning electron microscopy (Cryo-BIB-SEM). J. Power. Sources. 2017, 345, 97-107.
12. Jaiser, S.; Müller, M.; Baunach, M.; Bauer, W.; Scharfer, P.; Schabel, W. Investigation of film solidification and binder migration during drying of Li-ion battery anodes. J. Power. Sources. 2016, 318, 210-9.
13. Westphal, B. G.; Kwade, A. Critical electrode properties and drying conditions causing component segregation in graphitic anodes for lithium-ion batteries. J. Energy. Storage. 2018, 18, 509-17.
14. Chen, H.; Ling, M.; Hencz, L.; et al. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem. Rev. 2018, 118, 8936-82.
15. Petrie, E. Adhesive bonding of textiles: principles, types of adhesive and methods of use. In: Joining Textiles Principles and Applications; Woodhead Publishing Series in Textiles; Elsevier, 2013; pp. 225-74.
16. Mcbain, J. W.; Hopkins, D. G. On adhesives and adhesive action. J. Phys. Chem. 1925, 29, 188-204.
17. Hofmann, K.; Hegde, A. D.; Liu-theato, X.; Gordon, R.; Smith, A.; Willenbacher, N. Effect of mechanical properties on processing behavior and electrochemical performance of aqueous processed graphite anodes for lithium-ion batteries. J. Power. Sources. 2024, 593, 233996.
18. Choi, S.; Kwon, T. W.; Coskun, A.; Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 2017, 357, 279-83.
19. Ye, R.; Liu, J.; Tian, J.; et al. Novel binder with cross-linking reconfiguration functionality for silicon anodes of lithium-ion batteries. ACS. Appl. Mater. Interfaces. 2024, 16, 16820-9.
20. Yu, Y.; Yang, C.; Jiang, Y.; Zhu, J.; Zhang, J.; Jiang, M. Consecutive covalent bonds reconstruct robust dual-interfaces by carbonized binder to enable conductive-additive-free durable silicon anode. Nano. Energy. 2024, 130, 110108.
21. Ren, W. F.; Le, J. B.; Li, J. T.; et al. Improving the electrochemical property of silicon anodes through hydrogen-bonding cross-linked thiourea-based polymeric binders. ACS. Appl. Mater. Interfaces. 2021, 13, 639-49.
22. Xiang, Y.; Xu, H.; Deng, J.; Li, J.; Nazir, M. A.; Bao, S. Spiderweb-like three-dimensional cross-linked AGE binder for high performance silicon-based lithium battery. ACS. Appl. Energy. Mater. 2025, 8, 2973-81.
23. Kumberg, J.; Bauer, W.; Schmatz, J.; et al. Reduced drying time of anodes for lithium-ion batteries through simultaneous multilayer coating. Energy. Tech. 2021, 9, 2100367.
24. Bak, C.; Kim, K.; Lee, H.; et al. Advanced multilayer model electrode for binder distribution within composite electrodes of lithium batteries. Chem. Eng. J. 2024, 483, 148913.
25. Burger, D.; Keim, N.; Shabbir, J.; et al. Simultaneous primer coating for fast drying of battery electrodes. Energy. Tech. 2025, 13, 2401668.
26. Lee, J.; Paik, U.; Hackley, V. A.; Choi, Y. Effect of poly(acrylic acid) on adhesion strength and electrochemical performance of natural graphite negative electrode for lithium-ion batteries. J. Power. Sources. 2006, 161, 612-6.
27. Mori, T.; Kitamura, K. Effect of adsorption behaviour of polyelectrolytes on fluidity and packing ability of aqueous graphite slurries. Adv. Powder. Technol. 2017, 28, 280-7.
28. Bridel, J.; Azaïs, T.; Morcrette, M.; Tarascon, J.; Larcher, D. In situ observation and long-term reactivity of Si/C/CMC composites electrodes for Li-ion batteries. J. Electrochem. Soc. 2011, 158, A750-9.
29. Huang, L.; Chen, D.; Li, C.; Chang, Y.; Lee, J. Dispersion homogeneity and electrochemical performance of Si anodes with the addition of various water-based binders. J. Electrochem. Soc. 2018, 165, A2239-46.
30. Kim, K. J.; Ahn, K. H. Effects of sodium carboxymethyl cellulose and poly (acrylic acid) on the agglomeration behavior of aqueous silicon suspensions. Colloids. Surf. A. Physicochem. Eng. Asp. 2023, 673, 131801.
31. Park, J. H.; Ahn, C. H.; Ahn, K. H. Rheological behavior and microstructure formation of Si/C anode slurries for Li-ion batteries. Korea-Aust. Rheol. J. 2023, 35, 335-47.
32. Kim, B.; Song, Y.; Youn, B.; Lee, D. Dispersion homogeneity of silicon anode slurries with various binders for Li-ion battery anode coating. Polymers 2023, 15, 1152.
33. Haberzettl, P.; Filipovic, N.; Vrankovic, D.; Willenbacher, N. Processing of aqueous graphite-silicon oxide slurries and its impact on rheology, coating behavior, microstructure, and cell performance. Batteries 2023, 9, 581.
34. Andrews, E. H.; Kinloch, A. J. Mechanics of adhesive failure. I. Proc. R. Soc. Lond. A. 1973, 332, 385-99.
35. Kinloch, A. J. Adhesion and adhesives: science and technology, 1th ed.; Springer Science & Business Media, 2087.
37. Murdock, A. T.; van, E. C. D.; Britton, J.; et al. Targeted removal of copper foil surface impurities for improved synthesis of CVD graphene. Carbon 2017, 122, 207-16.
38. Chang, W. J.; Lee, G. H.; Cheon, Y. J.; et al. Direct observation of carboxymethyl cellulose and styrene-butadiene rubber binder distribution in practical graphite anodes for Li-ion batteries. ACS. Appl. Mater. Interfaces. 2019, 11, 41330-7.
39. Burdette-trofimov, M. K.; Armstrong, B. L.; Rogers, A. M.; et al. Understanding binder-silicon interactions during slurry processing. J. Phys. Chem. C. 2020, 124, 13479-94.
40. Kwon, T. W.; Choi, J. W.; Coskun, A. The emerging era of supramolecular polymeric binders in silicon anodes. Chem. Soc. Rev. 2018, 47, 2145-64.
41. Lee, Y. M.; Lee, J. Y.; Shim, H.; Lee, J. K.; Park, J. SEI layer formation on amorphous Si Thin electrode during precycling. J. Electrochem. Soc. 2007, 154, A515.
42. Hochgatterer, N. S.; Schweiger, M. R.; Koller, S.; et al. Silicon/graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability. Electrochem. Solid-State. Lett. 2008, 11, A76.
43. Mazouzi, D.; Lestriez, B.; Roué, L.; Guyomard, D. Silicon composite electrode with high capacity and long cycle life. Electrochem. Solid-State. Lett. 2009, 12, A215.
44. Zhang, Q.; Li, W.; Gu, M.; Jin, Y. Dispersion and rheological properties of concentrated silicon aqueous suspension. Powder. Technol. 2006, 161, 130-4.
45. Vogl, U. S.; Das, P. K.; Weber, A. Z.; Winter, M.; Kostecki, R.; Lux, S. F. Mechanism of interactions between CMC binder and Si single crystal facets. Langmuir 2014, 30, 10299-307.
46. Bitsch, B. Verwendung von kapillarsuspensionen zur prozessierung von lithium-ionen batterieelektroden. Ph.D. Dissertation, Karlsruher Institut für Technologie (KIT), Karlsruhe,Germany, 2017. Available from: https://publikationen.bibliothek.kit.edu/1000064637. [Last accessed on 15 Apr 2025].