REFERENCES

1. Manthiram, A.; Fu, Y.; Su, Y. S. Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 2013, 46, 1125-34.

2. Zhou, L.; Li, H.; Wu, X.; et al. Double-shelled Co3O4/C nanocages enabling polysulfides adsorption for high-performance lithium-sulfur batteries. ACS. Appl. Energy. Mater. 2019, 2, 8153-62.

3. Zhao, M.; Li, B. Q.; Zhang, X. Q.; Huang, J. Q.; Zhang, Q. A perspective toward practical lithium-sulfur batteries. ACS. Cent. Sci. 2020, 6, 1095-104.

4. Wang, Z.; Wang, B.; Yang, Y.; et al. Mixed-metal-organic framework with effective lewis acidic sites for sulfur confinement in high-performance lithium-sulfur batteries. ACS. Appl. Mater. Interfaces. 2015, 7, 20999-1004.

5. Wang, P.; Zeng, R.; You, L.; et al. Graphene-like matrix composites with Fe2O 3 and Co3O4 as cathode materials for lithium-sulfur batteries. ACS. Appl. Nano. Mater. 2020, 3, 1382-90.

6. Pope, M. A.; Aksay, I. A. Structural design of cathodes for Li-S batteries. Adv. Energy. Mater. 2015, 5, 1500124.

7. Kim, J.; Lee, D.; Jung, H.; Sun, Y.; Hassoun, J.; Scrosati, B. An advanced lithium-sulfur battery. Adv. Funct. Mater. 2013, 23, 1076-80.

8. He, G.; Evers, S.; Liang, X.; Cuisinier, M.; Garsuch, A.; Nazar, L. F. Tailoring porosity in carbon nanospheres for lithium-sulfur battery cathodes. ACS. Nano. 2013, 7, 10920-30.

9. Li, Z.; Jiang, Y.; Yuan, L.; et al. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries. ACS. Nano. 2014, 8, 9295-303.

10. Sun, L.; Wang, D.; Luo, Y.; et al. Sulfur embedded in a mesoporous carbon nanotube network as a binder-free electrode for high-performance lithium-sulfur batteries. ACS. Nano. 2016, 10, 1300-8.

11. Chulliyote, R.; Hareendrakrishnakumar, H.; Joseph, M. G. Hierarchical porous carbon material with multifunctionalities derived from honeycomb as a sulfur host and laminate on the cathode for high-performance lithium-sulfur batteries. ACS. Sustainable. Chem. Eng. 2019, 7, 19344-55.

12. Zhang, F.; Li, Z.; Cao, T.; et al. Multishelled Ni2P microspheres as multifunctional sulfur host 3D-printed cathode materials ensuring high areal capacity of lithium-sulfur batteries. ACS. Sustainable. Chem. Eng. 2021, 9, 6097-106.

13. Park, J.; Yu, B. C.; Park, J. S.; et al. Tungsten disulfide catalysts supported on a carbon cloth interlayer for high performance Li-S battery. Adv. Energy. Mater. 2017, 7, 1602567.

14. Liu, Z.; Sun, L.; Liu, X.; Lu, Q. Stabilization strategies of lithium metal anode toward dendrite-free lithium-sulfur batteries. Chem. Eur. J. 2024, 30, e202402032.

15. Song, B.; Su, L.; Liu, X.; et al. An examination and prospect of stabilizing Li metal anode in lithium-sulfur batteries: a review of latest progress. Electron 2023, 1, e13.

16. Song, J.; Xu, T.; Gordin, M. L.; et al. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 1243-50.

17. Chung, S.; Manthiram, A. Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 5299-306.

18. Xu, R.; Lu, J.; Amine, K. progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv. Energy. Mater. 2015, 5, 1500408.

19. Liu, Y.; Elias, Y.; Meng, J.; et al. Electrolyte solutions design for lithium-sulfur batteries. Joule 2021, 5, 2323-64.

20. Saroha, R.; Choi, H. H.; Cho, J. S. Boosting redox kinetics using rationally engineered cathodic interlayers comprising porous rGO-CNT framework microspheres with NiSe2-core@N-doped graphitic carbon shell nanocrystals for stable Li-S batteries. Chem. Eng. J. 2023, 473, 145391.

21. Saroha, R.; Ka, H. S.; Park, G. D.; Cho, C.; Kang, D.; Cho, J. S. Long-term stability of lithium-sulfur batteries via synergistic integration of nitrogen-doped graphitic carbon-coated cobalt selenide nanocrystals within porous three-dimensional graphene-carbon nanotube microspheres. J. Power. Sources. 2024, 592, 233893.

22. Wang, L.; Meng, X.; Wang, X.; Zhen, M. Dual-conductive CoSe2@TiSe2 -C heterostructures promoting overall sulfur redox kinetics under high sulfur loading and lean electrolyte. Small 2023, 19, 2300089.

23. Lu, J.; Luo, S.; Qi, Z.; et al. Recent advances in transition metal chalcogenide derivatives from metal-organic frameworks for lithium-sulfur batteries. Cell. Rep. Phys. Sci. 2024, 5, 102028.

24. Shirodkar, S. N.; Dev, P. Nonlinear hybrid surface-defect states in defective Bi2Se3. J. Phys. Chem. C. 2022, 126, 11833-9.

25. Zhang, H.; Liu, C.; Qi, X.; Dai, X.; Fang, Z.; Zhang, S. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature. Phys. 2009, 5, 438-42.

26. Xia, Y.; Qian, D.; Hsieh, D.; et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature. Phys. 2009, 5, 398-402.

27. Hu, L.; Zhu, T.; Liu, X.; Zhao, X. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv. Funct. Mater. 2014, 24, 5211-8.

28. Singh, S.; Sahoo, R. K.; Shinde, N. M.; et al. Asymmetric faradaic assembly of Bi2O3 and MnO2 for a high-performance hybrid electrochemical energy storage device. RSC. Adv. 2019, 9, 32154-64.

29. Wang, K.; Shao, C.; Li, X.; Miao, F.; Lu, N.; Liu, Y. Heterojunctions of p-BiOI nanosheets/n-TiO2 nanofibers: preparation and enhanced visible-light photocatalytic activity. Materials 2016, 9, 90.

30. El-makaty, F. M.; Nawaz, M.; Shakoor, R.; Hammuda, A.; Youssef, K. M. Microstructural effect on the corrosion behavior of n- and p-type bismuth tellurides fabricated by induction melting. Mater. Charact. 2023, 202, 112987.

31. Cho, W. S.; Hong, D. M.; Dong, W. J.; et al. Porously reduced 2-dimensional Bi2O2CO3 petals for strain-mediated electrochemical CO2 reduction to HCOOH. Energy. Environ. Mater. 2024, 7, e12490.

32. Abzal, S. M.; Khatua, S.; Kalyan, K.; et al. Exploring the electrochemical performance of layered Bi2Se3 hexagonal platelets as the anode material for lithium-ion batteries. Phys. Chem. Chem. Phys. 2024, 26, 25418-29.

33. Gao, L.; Li, H.; Ren, W.; et al. Patterning Bi2Se3 single-crystalline thin films on Si(111) substrates using strong oxidizing acids. RSC. Adv. 2017, 7, 32294-9.

34. Edmonds, M. T.; Hellerstedt, J. T.; Tadich, A.; et al. Stability and surface reconstruction of topological insulator Bi2Se3 on exposure to atmosphere. J. Phys. Chem. C. 2014, 118, 20413-9.

35. Kong, D.; Cha, J. J.; Lai, K.; et al. Rapid surface oxidation as a source of surface degradation factor for Bi2Se3. ACS. Nano. 2011, 5, 4698-703.

36. Dharmadhikari, V. S.; Sainkar, S.; Badrinarayan, S.; Goswami, A. Characterisation of thin films of bismuth oxide by X-ray photoelectron spectroscopy. J. Electron. Spectrosc. Relat. Phenom. 1982, 25, 181-9.

37. Wu, J.; Zhao, J.; Vaidhyanathan, B.; et al. Rapid microwave-assisted bulk production of high-quality reduced graphene oxide for lithium ion batteries. Materialia 2020, 13, 100833.

38. Varodi, C.; Pogăcean, F.; Cioriță, A.; et al. Nitrogen and sulfur co-doped graphene as efficient electrode material for L-cysteine detection. Chemosensors 2021, 9, 146.

39. Begum, H.; Ahmed, M. S.; Jeon, S. New approach for porous chitosan-graphene matrix preparation through enhanced amidation for synergic detection of dopamine and uric acid. ACS. Omega. 2017, 2, 3043-54.

40. Ismagilov, Z. R.; Shalagina, A. E.; Podyacheva, O. Y.; et al. Structure and electrical conductivity of nitrogen-doped carbon nanofibers. Carbon 2009, 47, 1922-9.

41. Sun, H.; Xiao, M.; Zhu, F. Nitrogen doped porous carbon with high rate performance for lithium ion storage. J. Electroanal. Chem. 2023, 932, 117254.

42. Nulu, A.; Nulu, V.; Sohn, K. Y. N-doped CNTs wrapped sulfur-loaded hierarchical porous carbon cathode for Li-sulfur battery studies. RSC. Adv. 2024, 14, 2564-76.

43. Lee, J. Y.; Kim, N. Y.; Shin, D. Y.; et al. Nitrogen-doped graphene-wrapped iron nanofragments for high-performance oxygen reduction electrocatalysts. J. Nanopart. Res. 2017, 19, 98.

44. Li, Y.; Jiang, T.; Yang, H.; et al. A heterostuctured Co3S4/MnS nanotube array as a catalytic sulfur host for lithium-sulfur batteries. Electrochim. Acta. 2020, 330, 135311.

45. Tang, H.; Yao, S.; Xue, S.; et al. In-situ synthesis of carbon@Ti4O7 non-woven fabric as a multi-functional interlayer for excellent lithium-sulfur battery. Electrochim. Acta. 2018, 263, 158-67.

46. Yu, R.; Chung, S.; Chen, C.; Manthiram, A. An ant-nest-like cathode substrate for lithium-sulfur batteries with practical cell fabrication parameters. Energy. Storage. Mater. 2019, 18, 491-9.

47. Xiang, Y.; Li, J.; Lei, J.; et al. Advanced Separators for lithium-ion and lithium-sulfur batteries: a review of recent progress. ChemSusChem 2016, 9, 3023-39.

48. Kim, G.; Lee, Y.; Park, J.; et al. Enhanced performance of lithium-sulfur battery cathode via composition optimization using modified MWCNTs as a conductive material and poly (acrylic acid) as a binder. Int. J. Electrochem. Sci. 2023, 18, 100217.

49. Ghazi, Z. A.; He, X.; Khattak, A. M.; et al. MoS2/celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries. Adv. Mater. 2017, 29, 1606817.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/