REFERENCES

1. Feng, K.; Li, M.; Liu, W.; et al. Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications. Small 2018, 14, 1702737.

2. Li, P.; Zhao, G.; Zheng, X.; et al. Recent progress on silicon-based anode materials for practical lithium-ion battery applications. Energy. Storage. Mater. 2018, 15, 422-46.

3. Guo, J.; Dong, D.; Wang, J.; et al. Silicon-based lithium ion battery systems: state-of-the-art from half and full cell viewpoint. Adv. Funct. Mater. 2021, 31, 2102546.

4. Ko, M.; Chae, S.; Cho, J. Challenges in accommodating volume change of Si anodes for Li-ion batteries. ChemElectroChem 2015, 2, 1645-51.

5. McDowell, M. T.; Lee, S. W.; Nix, W. D.; Cui, Y. 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 2013, 25, 4966-85.

6. Yang, Y.; Yuan, W.; Kang, W.; et al. Silicon-nanoparticle-based composites for advanced lithium-ion battery anodes. Nanoscale 2020, 12, 7461-84.

7. Yang, Y.; Wu, S.; Zhang, Y.; et al. Towards efficient binders for silicon based lithium-ion battery anodes. Chem. Eng. J. 2021, 406, 126807.

8. Deng, L.; Zheng, Y.; Zheng, X.; et al. Design criteria for silicon-based anode binders in half and full cells. Adv. Energy. Mater. 2022, 12, 2200850.

9. Tang, J.; Zhou, J.; Duan, X.; Yang, Y.; Dai, X.; Wu, F. Constructing the bonding between conductive agents and active materials/binders stabilizes silicon anode in lithium-ion batteries. J. Energy. Chem. 2023, 80, 23-31.

10. Huang, L.; You, Y.; Liu, M.; et al. Nanoscale precision welding-enabled quasi-3D conductive carbon blacks for fast-charging and long-lasting secondary batteries. Carbon 2024, 230, 119688.

11. Kim, D. S.; Lee, J. U.; Kim, S. H.; Hong, J. Electrochemically exfoliated graphite as a highly efficient conductive additive for an anode in lithium‐ion batteries. Battery. Energy. 2023, 2, 20230012.

12. Weng, W.; Sun, Q.; Zhang, Y.; et al. Winding aligned carbon nanotube composite yarns into coaxial fiber full batteries with high performances. Nano. Lett. 2014, 14, 3432-8.

13. Ren, J.; Li, L.; Chen, C.; et al. Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv. Mater. 2013, 25, 1155-9, 1224.

14. Liu, X.; Huang, Z. D.; Oh, S. W.; et al. Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: a review. Compos. Sci. Technol. 2012, 72, 121-44.

15. Lee, H.; Kim, H.; Cho, M. S.; Choi, J.; Lee, Y. Fabrication of polypyrrole (PPy)/carbon nanotube (CNT) composite electrode on ceramic fabric for supercapacitor applications. Electrochim. Acta. 2011, 56, 7460-6.

16. Kang, H. E.; Ko, J.; Song, S. G.; Yoon, Y. S. Recent progress in utilizing carbon nanotubes and graphene to relieve volume expansion and increase electrical conductivity of Si-based composite anodes for lithium-ion batteries. Carbon 2024, 219, 118800.

17. Gao, C.; Guo, M.; Liu, Y.; et al. Surface modification methods and mechanisms in carbon nanotubes dispersion. Carbon 2023, 212, 118133.

18. Avilés, F.; Cauich-rodríguez, J.; Moo-tah, L.; May-pat, A.; Vargas-coronado, R. Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon 2009, 47, 2970-5.

19. Choi, J. H.; Lee, C.; Park, S.; et al. Improved electrochemical performance using well-dispersed carbon nanotubes as conductive additive in the Ni-rich positive electrode of lithium-ion batteries. Electrochem. Commun. 2023, 146, 107419.

20. Kim, H.; Lim, J. H.; Lee, T.; et al. Ozone-treated carbon nanotube as a conductive agent for dry-processed lithium-ion battery cathode. ACS. Energy. Lett. 2023, 8, 3460-6.

21. Zhou, J.; Lan, Y.; Zhang, K.; et al. In situ growth of carbon nanotube wrapped Si composites as anodes for high performance lithium ion batteries. Nanoscale 2016, 8, 4903-7.

22. Feng, X.; Yang, J.; Bie, Y.; Wang, J.; Nuli, Y.; Lu, W. Nano/micro-structured Si/CNT/C composite from nano-SiO2 for high power lithium ion batteries. Nanoscale 2014, 6, 12532-9.

23. Forney, M. W.; Dileo, R. A.; Raisanen, A.; et al. High performance silicon free-standing anodes fabricated by low-pressure and plasma-enhanced chemical vapor deposition onto carbon nanotube electrodes. J. Power. Sources. 2013, 228, 270-80.

24. Ding, X.; Wang, H.; Liu, X.; et al. Advanced anodes composed of graphene encapsulated nano-silicon in a carbon nanotube network. RSC. Adv. 2017, 7, 15694-701.

25. He, Z.; Zhang, C.; Zhu, Z.; Yu, Y.; Zheng, C.; Wei, F. Advances in carbon nanotubes and carbon coatings as conductive networks in silicon‐based anodes. Adv. Funct. Mater. 2024, 34, 2408285.

26. Joo, Y.; Brady, G. J.; Shea, M. J.; et al. Isolation of pristine electronics grade semiconducting carbon nanotubes by switching the rigidity of the wrapping polymer backbone on demand. ACS. Nano. 2015, 9, 10203-13.

27. Abousalman-Rezvani, Z.; Eskandari, P.; Roghani-Mamaqani, H.; Salami-Kalajahi, M. Functionalization of carbon nanotubes by combination of controlled radical polymerization and “grafting to” method. Adv. Colloid. Interface. Sci. 2020, 278, 102126.

28. Deng, L.; Deng, S. S.; Pan, S. Y.; et al. Multivalent amide-hydrogen-bond supramolecular binder enhances the cyclic stability of silicon-based anodes for lithium-ion batteries. ACS. Appl. Mater. Interfaces. 2021, 13, 22567-76.

29. Zhang, M.; Ning, G.; Xiao, Z. Binder-assisted dispersion of agglomerated carbon nanotubes for efficiently establishing conductive networks in cathodes of Li-ion batteries. Energy. Technol. 2020, 8, 2000589.

30. Gunavadhi, M.; Maria, L. A.; Chamundeswari, V. N.; Parthasarathy, M. Nanotube-grafted polyacrylamide hydrogels for electrophoretic protein separation. Electrophoresis 2012, 33, 1271-5.

31. Ma, H.; Tong, L.; Xu, Z.; Fang, Z. Functionalizing carbon nanotubes by grafting on intumescent flame retardant: nanocomposite synthesis, morphology, rheology, and flammability. Adv. Funct. Mater. 2008, 18, 414-21.

32. Wang, X.; Ouyang, C.; Dou, S.; Liu, D.; Wang, S. Oxidized carbon nanotubes as an efficient metal-free electrocatalyst for the oxygen reduction reaction. RSC. Adv. 2015, 5, 41901-4.

33. Li, Z.; Tang, M.; Dai, J.; Wang, T.; Bai, R. Effect of multiwalled carbon nanotube-grafted polymer brushes on the mechanical and swelling properties of polyacrylamide composite hydrogels. Polymer 2016, 85, 67-76.

34. Xiong, H.; Motchelaho, M. A.; Moyo, M.; Jewell, L. L.; Coville, N. J. Fischer-tropsch synthesis: iron-based catalysts supported on nitrogen-doped carbon nanotubes synthesized by post-doping. Appl. Catal. A. Gen. 2014, 482, 377-86.

35. Abo-hamad, A.; Hayyan, M.; Alsaadi, M. A.; Mirghani, M. E.; Hashim, M. A. Functionalization of carbon nanotubes using eutectic mixtures: a promising route for enhanced aqueous dispersibility and electrochemical activity. Chem. Eng. J. 2017, 311, 326-39.

36. Huang, Y. Y.; Terentjev, E. M. Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties. Polymers 2012, 4, 275-95.

37. Han, J. T.; Kim, S. Y.; Woo, J. S.; Jeong, H. J.; Oh, W.; Lee, G. Hydrogen-bond-driven assembly of thin multiwalled carbon nanotubes. J. Phys. Chem. C. 2008, 112, 15961-5.

38. Zeng, W.; Wang, L.; Peng, X.; et al. Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries. Adv. Energy. Mater. 2018, 8, 1702314.

39. Weppner, W.; Huggins, R. A. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J. Electrochem. Soc. 1977, 124, 1569-78.

40. Son, B.; Ryou, M. H.; Choi, J.; et al. Measurement and analysis of adhesion property of lithium-ion battery electrodes with SAICAS. ACS. Appl. Mater. Interfaces. 2014, 6, 526-31.

41. Zhang, F.; Xia, H.; Wei, T.; Li, H.; Yang, M.; Cao, A. A new universal aqueous conductive binder via esterification reinforced electrostatic/H-bonded self-assembly for high areal capacity and stable lithium-ion batteries. Energy. Environ. Sci. 2024, 17, 238-48.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/