REFERENCES

1. Kong, L.; Li, C.; Jiang, J.; Pecht, M. G. Li-ion battery fire hazards and safety strategies. Energies 2018, 11, 2191.

2. Schnell, J.; Günther, T.; Knoche, T.; et al. All-solid-state lithium-ion and lithium metal batteries - paving the way to large-scale production. J. Power. Sources. 2018, 382, 160-75.

3. Zhou, L.; Assoud, A.; Zhang, Q.; Wu, X.; Nazar, L. F. New family of argyrodite thioantimonate lithium superionic conductors. J. Am. Chem. Soc. 2019, 141, 19002-13.

4. Adeli, P.; Bazak, J. D.; Park, K. H.; et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew. Chem. Int. Ed. 2019, 58, 8681-6.

5. Kamaya, N.; Homma, K.; Yamakawa, Y.; et al. A lithium superionic conductor. Nat. Mater. 2011, 10, 682-6.

6. Kato, Y.; Hori, S.; Saito, T.; et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy. 2016, 1, 16030.

7. Sun, Y.; Guan, P.; Liu, Y.; Xu, H.; Li, S.; Chu, D. Recent progress in lithium lanthanum titanate electrolyte towards all solid-state lithium ion secondary battery. Crit. Rev. Solid. State. Mater. Sci. 2019, 44, 265-82.

8. Lu, J.; Li, Y. Perovskite-type Li-ion solid electrolytes: a review. J. Mater. Sci. Mater. Electron. 2021, 32, 9736-54.

9. Tao, B.; Ren, C.; Li, H.; et al. Thio-/LISICON and LGPS-type solid electrolytes for all-solid-state lithium-ion batteries. Adv. Funct. Mater. 2022, 32, 2203551.

10. Kobayashi, T.; Yamada, A.; Kanno, R. Interfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON. Electrochim. Acta. 2008, 53, 5045-50.

11. Li, X.; Liang, J.; Chen, N.; et al. Water-mediated synthesis of a superionic halide solid electrolyte. Angew. Chem. 2019, 131, 16579-84.

12. Zhou, L.; Kwok, C. Y.; Shyamsunder, A.; Zhang, Q.; Wu, X.; Nazar, L. F. A new halospinel superionic conductor for high-voltage all solid state lithium batteries. Energy. Environ. Sci. 2020, 13, 2056-63.

13. Liu, X.; Mi, F.; Sun, C. A cost-effective Ca-doped Li2ZrCl6 halide solid electrolyte for all-solid-state lithium batteries. Chem. Commun. 2025, 61, 1144-7.

14. Braga, M. H.; Ferreira, J. A.; Stockhausen, V.; Oliveira, J. E.; El-azab, A. Novel Li3ClO based glasses with superionic properties for lithium batteries. J. Mater. Chem. A. 2014, 2, 5470-80.

15. Ou, J.; Tatagari, V.; Senevirathna, I.; et al. On the formation and properties of amorphous and crystalline Li3-yBay/2OCl electrolytes. J. Power. Sources. 2024, 609, 234685.

16. Tanaka, Y.; Ueno, K.; Mizuno, K.; Takeuchi, K.; Asano, T.; Sakai, A. New oxyhalide solid electrolytes with high lithium ionic conductivity >10 mS cm-1 for all-solid-state batteries. Angew. Chem. Int. Ed. 2023, 62, e202217581.

17. Bates, J.; Dudney, N.; Gruzalski, G.; et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J. Power. Sources. 1993, 43, 103-10.

18. Zou, Z.; Xiao, Z.; Lin, Z.; Zhang, B.; Zhang, C.; Wei, F. Lithium phosphorous oxynitride as an advanced solid-state electrolyte to boost high-energy lithium metal battery. Adv. Funct. Mater. 2024, 34, 2409330.

19. Yin, L.; Yuan, H.; Kong, L.; Lu, Z.; Zhao, Y. Engineering Frenkel defects of anti-perovskite solid-state electrolytes and their applications in all-solid-state lithium-ion batteries. Chem. Commun. 2020, 56, 1251-4.

20. Majeed, M. K.; Hussain, A.; Hussain, G.; et al. Interfacial engineering of polymer solid-state lithium battery electrolytes and Li-metal anode: current status and future directions. Small 2024, 20, 2406357.

21. Saleem, A.; Iqbal, R.; Majeed, M. K.; et al. Boosting lithium-ion conductivity of polymer electrolyte by selective introduction of covalent organic frameworks for safe lithium metal batteries. Nano. Energy. 2024, 128, 109848.

22. Shi, K.; Yu, C.; Zheng, D.; Yang, Z.; Zhang, W. Rational design of continuous and short-range lithium ion pathways based on polydopamine-anchored metal-organic frameworks for all-solid-state electrolytes. J. Energy. Chem. 2024, 99, 712-24.

23. Tan, J.; Wang, Z.; Cui, J.; et al. Sandwich-type composited solid polymer electrolytes to strengthen the interfacial ionic transportation and bulk conductivity for all-solid-state lithium batteries from room temperature to 120 °C. J. Energy. Chem. 2024, 95, 288-95.

24. Dai, T.; Wu, S.; Lu, Y.; et al. Inorganic glass electrolytes with polymer-like viscoelasticity. Nat. Energy. 2023, 8, 1221-8.

25. Hayashi, A.; Hama, S.; Morimoto, H.; Tatsumisago, M.; Minami, T. Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling. J. Am. Ceram. Soc. 2001, 84, 477-79.

26. Agostini, M.; Aihara, Y.; Yamada, T.; Scrosati, B.; Hassoun, J. A lithium-sulfur battery using a solid, glass-type P2S5-Li2S electrolyte. Solid. State. Ionics. 2013, 244, 48-51.

27. Wang, Y.; Ouyang, J.; Yuan, H.; et al. Impact of local amorphous environment on the diffusion of sodium ions at the solid electrolyte interface in sodium-ion batteries. Chin. Chem. Lett. , 2024, 110412.

28. Ding, J.; Ji, D.; Yue, Y.; Smedskjaer, M. M. Amorphous materials for lithium-ion and post-lithium-ion batteries. Small 2024, 20, 2304270.

29. Ishiguro, Y.; Ueno, K.; Nishimura, S.; Iida, G.; Igarashib, Y. TaCl5-glassified ultrafast lithium ion-conductive halide electrolytes for high-performance all-solid-state lithium batteries. Chem. Lett. 2023, 52, 237-41.

30. Li, F.; Cheng, X.; Lu, G.; et al. Amorphous chloride solid electrolytes with high Li-ion conductivity for stable cycling of all-solid-state high-nickel cathodes. J. Am. Chem. Soc. 2023, 145, 27774-87.

31. Zhang, S.; Zhao, F.; Chen, J.; et al. A family of oxychloride amorphous solid electrolytes for long-cycling all-solid-state lithium batteries. Nat. Commun. 2023, 14, 3780.

32. Dinnebier, R. E.; Billinge, S. J. Powder diffraction: theory and practice, Royal society of chemistry: 2015. https://books.google.com/books?id=wmQ_lFIMkFYC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false (accessed 2025-04-22).

33. Luo, M.; Ortiz, A. L.; Shaw, L. L. Unraveling processing-structure-electrical conductivity relationships of NaCrO2 cathodes for Na-ion batteries. J. Electrochem. Soc. 2019, 166, A3546.

34. Schwarz, R. B.; Koch, C. C. Formation of amorphous alloys by the mechanical alloying of crystalline powders of pure metals and powders of intermetallics. Appl. Phys. Lett. 1986, 49, 146-8.

35. Davis, R. M.; Mcdermott, B.; Koch, C. C. Mechanical alloying of brittle materials. Metall. Trans. A. 1988, 19, 2867-74.

36. Shaw, L. L.; Yang, Z.; Ren, R. Mechanically enhanced reactivity of silicon for the formation of silicon nitride composites. J. Am. Ceram. Soc. 1998, 81, 760-4.

37. Benjamin, J. S.; Volin, T. E. The mechanism of mechanical alloying. Metall. Trans. 1974, 5, 1929-34.

38. Schaffer, G. B.; Mccormick, P. G. On the kinetics of mechanical alloying. Metall. Trans. A. 1992, 23, 1285-90.

39. Ren, R.; Yang, Z.; Shaw, L. Polymorphic transformation and powder characteristics of TiO2 during high energy milling. J. Mater. Sci. 2000, 35, 6015-26.

40. Yang, Z.; Shaw, L. Synthesis of nanocrystalline SiC at ambient temperature through high energy reaction milling. Nanostruct. Mater. 1996, 7, 873-86.

41. Jolley, A. G.; Cohn, G.; Hitz, G. T.; Wachsman, E. D. Improving the ionic conductivity of NASICON through aliovalent cation substitution of Na3Zr2Si2PO12. Ionics 2015, 21, 3031-8.

42. Chiang, S.; Kaduk, J. A.; Shaw, L. L. High ionic conducting NaSICON enabled by mechanical activation enhanced reaction. Mater. Chem. Phys. 2024, 312, 128656.

43. Shaw, L.; Xie, X.; Ren, R.; Yang, Z. NMR studies on mixing of insoluble constituents during high energy milling. Scr. Mater. 1998, 39, 1169-75.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/