REFERENCES
1. Zhang, Y.; Yang, Z.; Tian, C. Probing and quantifying cathode charge heterogeneity in Li ion batteries. J. Mater. Chem. A. 2019, 7, 23628-61.
2. Yan, Z.; Wang, L.; Zhang, H.; He, X. Determination and engineering of Li-ion tortuosity in electrode toward high performance of Li-ion batteries. Adv. Energy. Mater. 2024, 14, 2303206.
3. Srivastava, I.; Bolintineanu, D. S.; Lechman, J. B.; Roberts, S. A. Controlling binder adhesion to impact electrode mesostructures and transport. ACS. Appl. Mater. Interfaces. 2020, 12, 34919-30.
4. Stallard, J. C.; Wheatcroft, L.; Booth, S. G.; et al. Mechanical properties of cathode materials for lithium-ion batteries. Joule 2022, 6, 984-1007.
5. Kabra, V.; Carter, R.; Li, M.; et al. Lithium plating characteristics in high areal capacity Li-ion battery electrodes. ACS. Appl. Mater. Interfaces. 2024, 16, 34830-9.
6. Li, Y.; Cao, Z.; Wang, Y.; et al. New insight into the role of fluoro-ethylene carbonate in suppressing Li-trapping for Si anodes in lithium-ion batteries. ACS. Energy. Lett. 2023, 8, 4193-203.
7. Cha, H.; Kim, J.; Lee, H.; et al. Boosting reaction homogeneity in high-energy lithium-ion battery cathode materials. Adv. Mater. 2020, 32, 2003040.
8. Gao, X.; Zhou, Y.; Han, D.; et al. Thermodynamic understanding of Li-dendrite formation. Joule 2020, 4, 1864-79.
9. Duan, X.; Li, B.; Li, J.; Gao, X.; Wang, L.; Xu, J. Quantitative understanding of lithium deposition-stripping process on graphite anodes of lithium-ion batteries. Adv. Energy. Mater. 2023, 13, 2203767.
10. Song, Y.; Wang, L.; Sheng, L.; et al. The significance of mitigating crosstalk in lithium-ion batteries: a review. Energy. Environ. Sci. 2023, 16, 1943-63.
11. Mallick, S.; Gayen, D. Thermal behaviour and thermal runaway propagation in lithium-ion battery systems - a critical review. J. Energy. Storage. 2023, 62, 106894.
12. Yan, Z.; Wang, L.; He, X. Rational electrode design for enhanced battery performance: addressing SOC heterogeneity and achieving energy density. Adv. Funct. Mater. 2025, 35, 2415637.
13. Liu, H.; Kazemiabnavi, S.; Grenier, A.; et al. Quantifying reaction and rate heterogeneity in battery electrodes in 3D through operando X-ray diffraction computed tomography. ACS. Appl. Mater. Interfaces. 2019, 11, 18386-94.
14. Strobridge, F. C.; Orvananos, B.; Croft, M.; et al. Mapping the inhomogeneous electrochemical reaction through porous LiFePO4 -electrodes in a standard coin cell battery. Chem. Mater. 2015, 27, 2374-86.
15. Sasaki, T.; Villevieille, C.; Takeuchi, Y.; Novák, P. Understanding Inhomogeneous reactions in Li-ion batteries: operando synchrotron X-Ray diffraction on two-layer electrodes. Adv. Sci. 2015, 2, 1500083.
16. Wolfman, M.; Khawaja, S.; Cabana, J. Mapping and metastability of heterogeneity in LiMn2O4 battery electrodes with high energy density. J. Electrochem. Soc. 2020, 167, 020526.
17. Graae, K. V.; Li, X.; Etter, M.; Schökel, A.; Norby, P. Operando space-resolved inhomogeneity in lithium diffusion across NMC and graphite electrodes in cylinder-type Li-ion batteries. J. Energy. Storage. 2023, 74, 109523.
18. Mikheenkova, A.; Schökel, A.; Smith, A. J.; et al. Visualizing ageing-induced heterogeneity within large prismatic lithium-ion batteries for electric cars using diffraction radiography. J. Power. Sources. 2024, 599, 234190.
19. Judge, W. J.; May, B. M.; Kumar, K.; et al. Evaluation of chemical and structural homogeneity in single particles of Li1-xNi0.33Mn0.33Co0.33O2. J. Phys. Chem. C. 2022, 126, 16082-9.
20. Sun, G.; Yu, F. D.; Lu, M.; et al. Surface chemical heterogeneous distribution in over-lithiated Li1+xCoO2 electrodes. Nat. Commun. 2022, 13, 6464.
21. Monasterial, A. P.; Weddle, P. J.; Atkinson, K.; et al. Dynamic in-plane heterogeneous and inverted response of graphite to fast charging and discharging conditions in lithium-ion pouch cells. Small. Sci. 2023, 3, 2200067.
22. Kimura, Y.; Tomura, A.; Fakkao, M.; et al. 3D operando imaging and quantification of inhomogeneous electrochemical reactions in composite battery electrodes. J. Phys. Chem. Lett. 2020, 11, 3629-36.
23. Nakamura, T.; Chiba, K.; Fakkao, M.; et al. Operando observation of formation and annihilation of inhomogeneous reaction distribution in a composite electrode for lithium-ion batteries. Batteries. Supercaps. 2019, 2, 688-94.
24. Nakamura, T.; Watanabe, T.; Kimura, Y.; et al. Visualization of Inhomogeneous reaction distribution in the model LiCoO2 composite electrode of lithium ion batteries. J. Phys. Chem. C. 2017, 121, 2118-24.
25. Katayama, M.; Sumiwaka, K.; Miyahara, R.; et al. X-ray absorption fine structure imaging of inhomogeneous electrode reaction in LiFePO4 lithium-ion battery cathode. J. Power. Sources. 2014, 269, 994-9.
26. Tian, C.; Xu, Y.; Nordlund, D.; et al. Charge heterogeneity and surface chemistry in polycrystalline cathode materials. Joule 2018, 2, 464-77.
27. Gent, W. E.; Li, Y.; Ahn, S.; et al. Persistent state-of-charge heterogeneity in relaxed, partially charged Li1-xNi1/3Co1/3Mn1/3O2 secondary particles. Adv. Mater. 2016, 28, 6631-8.
28. Sun, T.; Sun, G.; Yu, F.; et al. Soft X-ray ptychography chemical imaging of degradation in a composite surface-reconstructed Li-rich cathode. ACS. Nano. 2021, 15, 1475-85.
29. Maisuradze, M.; Li, M.; Mullaliu, A.; et al. Mapping heterogeneity of pristine and aged Li- and Na-mnhcf cathode by synchrotron-based energy-dependent full field transmission X-ray microscopy. Small. Methods. 2023, 7, 2300718.
30. Fang, S.; Yan, M.; Hamers, R. J. Cell design and image analysis for in situ Raman mapping of inhomogeneous state-of-charge profiles in lithium-ion batteries. J. Power. Sources. 2017, 352, 18-25.
31. Gilbert, J. A.; Maroni, V. A.; Cui, Y.; Gosztola, D. J.; Miller, D. J.; Abraham, D. P. Composition and impedance heterogeneity in oxide electrode cross-sections detected by raman spectroscopy. Adv. Mater. Interfaces. 2018, 5, 1701447.
32. Kerlau, M.; Marcinek, M.; Srinivasan, V.; Kostecki, R. M. Reprint of “studies of local degradation phenomena in composite cathodes for lithium-ion batteries”. Electrochim. Acta. 2007, 53, 1385-92.
33. Davis, A. L.; Goel, V.; Liao, D. W.; et al. Rate limitations in composite solid-state battery electrodes: revealing heterogeneity with operando microscopy. ACS. Energy. Lett. 2021, 6, 2993-3003.
34. Zhu, X.; Revilla, R. I.; Hubin, A. Direct correlation between local surface potential measured by kelvin probe force microscope and electrochemical potential of LiNi0.80Co0.15Al0.05O2 cathode at different state of charge. J. Phys. Chem. C. 2018, 122, 28556-63.
35. Choi, S.; Toaran, W.; Kim, S. H.; Song, Y. J.; Kim, Y. Probing depth-dependent inhomogeneous lithium concentration in thick LiNi0.88Co0.09Al0.03O2 cathodes for lithium-ion batteries. J. Alloys. Compd. 2023, 943, 169029.
36. Wood, V. X-ray tomography for battery research and development. Nat. Rev. Mater. 2018, 3, 293-5.
37. Zhao, H.; Deng, H. D.; Cohen, A. E.; et al. Learning heterogeneous reaction kinetics from X-ray videos pixel by pixel. Nature 2023, 621, 289-94.
38. Wang, Y.; Feng, X.; Guo, D.; et al. Temperature excavation to boost machine learning battery thermochemical predictions. Joule 2024, 8, 2639-51.
39. Kosfeld, M.; Westphal, B.; Kwade, A. Moisture behavior of lithium-ion battery components along the production process. J. Energy. Storage. 2023, 57, 106174.
40. Ng, S. H.; La, M. F.; Novák, P. A multiple working electrode for electrochemical cells: a tool for current density distribution studies. Angew. Chem. Int. Ed. 2009, 48, 528-32.
41. Landesfeind, J.; Ebner, M.; Eldiven, A.; Wood, V.; Gasteiger, H. A. Tortuosity of battery electrodes: validation of impedance-derived values and critical comparison with 3D tomography. J. Electrochem. Soc. 2018, 165, A469.
42. Ebner, M.; Chung, D.; García, R. E.; Wood, V. Tortuosity anisotropy in lithium-ion battery electrodes. Adv. Energy. Mater. 2014, 4, 1301278.
43. Norris, C.; Parmananda, M.; Roberts, S. A.; Mukherjee, P. P. Probing the influence of multiscale heterogeneity on effective properties of graphite electrodes. ACS. Appl. Mater. Interfaces. 2022, 14, 943-53.
44. Guo, Y.; Li, X.; Guo, H.; et al. Visualization of concentration polarization in thick electrodes. Energy. Storage. Mater. 2022, 51, 476-85.
45. Klink, S.; Schuhmann, W.; La, M. F. Vertical distribution of overpotentials and irreversible charge losses in lithium ion battery electrodes. ChemSusChem 2014, 7, 2159-66.
46. Yang, X.; Wang, C. Understanding the trilemma of fast charging, energy density and cycle life of lithium-ion batteries. J. Power. Sources. 2018, 402, 489-98.
47. Attia, P. M.; Bills, A.; Brosa, P. F.; et al. Review-“knees” in lithium-ion battery aging trajectories. J. Electrochem. Soc. 2022, 169, 060517.
48. Gao, T.; Han, Y.; Fraggedakis, D.; et al. Interplay of lithium intercalation and plating on a single graphite particle. Joule 2021, 5, 393-414.
49. Li, B.; Chao, Y.; Li, M.; et al. A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries. Electrochem. Energy. Rev. 2023, 6, 7.