1. Armand, M.; Tarascon, J. Building better batteries. Nature 2008, 451, 652-7.
2. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 2013, 135, 1167-76.
3. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-67.
4. Aravindan, V.; Gnanaraj, J.; Madhavi, S.; Liu, H. K. Lithium-ion conducting electrolyte salts for lithium batteries. Chem. Eur. J. 2011, 17, 14326-46.
5. Li, M.; Wang, C.; Chen, Z.; Xu, K.; Lu, J. New concepts in electrolytes. Chem. Rev. 2020, 120, 6783-819.
6. Qian, J.; Henderson, W. A.; Xu, W.; et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 2015, 6, 6362.
7. Chang, Z.; Qiao, Y.; Deng, H.; Yang, H.; He, P.; Zhou, H. A stable high-voltage lithium-ion battery realized by an in-built water scavenger. Energy. Environ. Sci. 2020, 13, 1197-204.
8. Jiao, S.; Ren, X.; Cao, R.; et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy. 2018, 3, 739-46.
9. Zheng, J.; Engelhard, M. H.; Mei, D.; et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy. 2017, 2, 17012.
10. Chang, Z.; Qiao, Y.; Yang, H.; et al. Beyond the concentrated electrolyte: further depleting solvent molecules within a Li+ solvation sheath to stabilize high-energy-density lithium metal batteries. Energy. Environ. Sci. 2020, 13, 4122-31.
11. Lu, Y.; Tu, Z.; Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 2014, 13, 961-9.
12. Wang, Z.; Tan, R.; Wang, H.; et al. A metal-organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery. Adv. Mater. 2018, 30, 1704436.
13. Chang, Z.; Yang, H.; Zhu, X.; He, P.; Zhou, H. A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments. Nat. Commun. 2022, 13, 1510.
14. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.
15. Kitagawa, S.; Kitaura, R.; Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 2004, 43, 2334-75.
16. Cui, Y.; Li, B.; He, H.; Zhou, W.; Chen, B.; Qian, G. Metal-organic frameworks as platforms for functional materials. Acc. Chem. Res. 2016, 49, 483-93.
17. Wang, L.; Han, Y.; Feng, X.; Zhou, J.; Qi, P.; Wang, B. Metal-organic frameworks for energy storage: batteries and supercapacitors. Coord. Chem. Rev. 2016, 307, 361-81.
18. Yaghi, O. M.; Li, G.; Li, H. Selective binding and removal of guests in a microporous metal-organic framework. Nature 1995, 378, 703-6.
19. Vaitsis, C.; Sourkouni, G.; Argirusis, C. Metal organic frameworks (MOFs) and ultrasound: a review. Ultrason. Sonochem. 2019, 52, 106-19.
20. Lee, J.; Choi, I.; Kim, E.; Park, J.; Nam, K. W. Metal-organic frameworks for high-performance cathodes in batteries. iScience 2024, 27, 110211.
21. Zheng, Y.; Zheng, S.; Xue, H.; Pang, H. Metal-organic frameworks for lithium-sulfur batteries. J. Mater. Chem. A. 2019, 7, 3469-91.
22. Chu, Z.; Gao, X.; Wang, C.; Wang, T.; Wang, G. Metal-organic frameworks as separators and electrolytes for lithium-sulfur batteries. J. Mater. Chem. A. 2021, 9, 7301-16.
23. Chae, S.; Ko, M.; Kim, K.; Ahn, K.; Cho, J. Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries. Joule 2017, 1, 47-60.
24. Zhou, Y.; Long, J.; Li, Y. Ni-based catalysts derived from a metal-organic framework for selective oxidation of alkanes. Chin. J. Catal. 2016, 37, 955-62.
25. Eddaoudi, M.; Moler, D. B.; Li, H.; et al. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 2001, 34, 319-30.
26. Sun, L.; Campbell, M. G.; Dincă, M. Electrically conductive porous metal-organic frameworks. Angew. Chem. Int. Ed. 2016, 55, 3566-79.
27. Xie, Z.; Cao, B.; Yue, X.; et al. Metal organic frameworks-based cathode materials for advanced Li-S batteries: a comprehensive review. Nano. Res. 2024, 17, 2592-618.
28. Ren, J.; Huang, Y.; Zhu, H.; et al. Recent progress on MOF-derived carbon materials for energy storage. Carbon. Energy. 2020, 2, 176-202.
29. Babkova, T.; Kiefer, R.; Le, Q. B. Hybrid electrolyte based on PEO and ionic liquid with in situ produced and dispersed silica for sustainable solid-state battery. Sustainability 2024, 16, 1683.
30. Yang, S.; Zhang, Z.; Lin, J.; et al. Recent progress in quasi/all-solid-state electrolytes for lithium-sulfur batteries. Front. Energy. Res. 2022, 10, 945003.
31. Reinoso, D. M.; de, T. G. C.; Fernández-Ropero, A. J.; Levenfeld, B.; Várez, A. Advancements in quasi-solid-state Li batteries: a rigid hybrid electrolyte using LATP porous ceramic membrane and infiltrated ionic liquid. ACS. Appl. Energy. Mater. 2024, 7, 1527-38.
32. Xin, S.; You, Y.; Wang, S.; Gao, H.; Yin, Y.; Guo, Y. Solid-state lithium metal batteries promoted by nanotechnology: progress and prospects. ACS. Energy. Lett. 2017, 2, 1385-94.
33. Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 2019, 5, 2326-52.
34. Vineeth, S.; Soni, C. B.; Sungjemmenla; et al. A quasi-solid state polymer electrolyte for high-rate and long-life sodium-metal batteries. J. Energy. Storage. 2023, 73, 108780.
35. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 2014, 114, 11503-618.
36. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G. Li-ion battery materials: present and future. Mater. Today. 2015, 18, 252-64.
37. Zhang, X.; Cheng, X.; Chen, X.; Yan, C.; Zhang, Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 2017, 27, 1605989.
38. Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1550.
39. Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587-603.
40. Zhang, H.; Eshetu, G. G.; Judez, X.; Li, C.; Rodriguez-Martínez, L. M.; Armand, M. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angew. Chem. Int. Ed. 2018, 57, 15002-27.
41. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 2017, 117, 10403-73.
42. Lin, D.; Liu, Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194-206.
43. Lingappan, N.; Lee, W.; Passerini, S.; Pecht, M. A comprehensive review of separator membranes in lithium-ion batteries. Renew. Sustain. Energy. Rev. 2023, 187, 113726.
44. Valverde, A.; Gonçalves, R.; Silva, M. M.; et al. Metal-organic framework based PVDF separators for high rate cycling lithium-ion batteries. ACS. Appl. Energy. Mater. 2020, 3, 11907-19.
45. Zhao, R.; Liang, Z.; Zou, R.; Xu, Q. Metal-organic frameworks for batteries. Joule 2018, 2, 2235-59.
46. Wang, H.; Dai, H. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chem. Soc. Rev. 2013, 42, 3088-113.
47. Li, D.; Hu, H.; Chen, B.; Lai, W. Y. Advanced current collector materials for high-performance lithium metal anodes. Small 2022, 18, 2200010.
48. Zhao, E.; Luo, S.; Hu, A.; et al. Rational design of an in-build quasi-solid-state electrolyte for high-performance lithium-ion batteries with the silicon-based anode. Chem. Eng. J. 2023, 463, 142306.
49. Fang, L.; Sun, W.; Hou, W.; Mao, Y.; Wang, Z.; Sun, K. Quasi-solid-state polymer electrolyte based on highly concentrated LiTFSI complexing DMF for ambient-temperature rechargeable lithium batteries. Ind. Eng. Chem. Res. 2022, 61, 7971-81.
50. Wang, P.; He, X.; Lv, Z.; et al. Light-driven polymer-based all-solid-state lithium-sulfur battery operating at room temperature. Adv. Funct. Mater. 2023, 33, 2211074.
51. Manthiram, A.; Yu, X.; Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.
52. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: a battery of choices. Science 2011, 334, 928-35.
53. Yao, X.; Huang, N.; Han, F.; et al. High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv. Energy. Mater. 2017, 7, 1602923.
54. Xiao, Q.; Yang, J.; Wang, X.; et al. Carbon-based flexible self-supporting cathode for lithium-sulfur batteries: progress and perspective. Carbon. Energy. 2021, 3, 271-302.
55. Zhai, Y.; Yang, G.; Zeng, Z.; et al. Composite hybrid quasi-solid electrolyte for high-energy lithium metal batteries. ACS. Appl. Energy. Mater. 2021, 4, 7973-82.
56. Li, Z.; Weng, S.; Fu, J.; et al. Nonflammable quasi-solid electrolyte for energy-dense and long-cycling lithium metal batteries with high-voltage Ni-rich layered cathodes. Energy. Storage. Mater. 2022, 47, 542-50.
57. Utpalla, P.; Mor, J.; Pujari, P. K.; Sharma, S. K. High ionic conductivity and ion conduction mechanism in ZIF-8 based quasi-solid-state electrolytes: a positron annihilation and broadband dielectric spectroscopy study. Phys. Chem. Chem. Phys. 2022, 24, 24999-5009.
58. Zhang, W.; Li, S.; Zhang, Y.; Wang, X.; Liu, J.; Zheng, Y. A quasi-solid-state electrolyte with high ionic conductivity for stable lithium-ion batteries. Sci. China. Technol. Sci. 2022, 65, 2369-79.
59. Yang, X.; Zhang, B.; Tian, Y.; et al. Electrolyte design principles for developing quasi-solid-state rechargeable halide-ion batteries. Nat. Commun. 2023, 14, 925.
60. Chen, Z.; Kim, G.; Kim, J.; et al. Highly stable quasi-solid-state lithium metal batteries: reinforced Li1.3Al0.3Ti1.7(PO4)3/Li interface by a protection interlayer. Adv. Energy. Mater. 2021, 11, 2101339.
61. Tian, R.; Jia, J.; Zhai, M.; et al. Design advanced lithium metal anode materials in high energy density lithium batteries. Heliyon 2024, 10, e27181.
62. Angarita-Gomez, S.; Balbuena, P. B. Insights into lithium ion deposition on lithium metal surfaces. Phys. Chem. Chem. Phys. 2020, 22, 21369-82.
63. Zinth, V.; von, L. C.; Hofmann, M.; et al. Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction. J. Power. Sources. 2014, 271, 152-9.
64. Koralalage, M. K.; Shreyas, V.; Arnold, W. R.; et al. Functionalization of cathode-electrolyte interface with ionic liquids for high-performance quasi-solid-state lithium-sulfur batteries: a low-sulfur loading study. Batteries 2024, 10, 155.
65. Liang, S.; Yan, W.; Wu, X.; et al. Gel polymer electrolytes for lithium ion batteries: Fabrication, characterization and performance. Solid. State. Ionics. 2018, 318, 2-18.
66. Li, W.; Li, H.; Liu, J.; et al. Systematic safety evaluation of quasi-solid-state lithium batteries: a case study. Energy. Environ. Sci. 2023, 16, 5444-53.
67. Liu, X.; Jia, H.; Li, H. Flame-retarding quasi-solid polymer electrolytes for high-safety lithium metal batteries. Energy. Storage. Mater. 2024, 67, 103263.
68. Lim, D.; Jeong, B.; Kim, H.; et al. Safety enhanced quasi-solid-state electrolyte based on thiol-ene click chemistry for rechargeable lithium ion batteries. Meet. Abstr. 2021, MA2021-01, 133.
69. Lin, L.; Liu, F.; Zhang, Y.; et al. Adjustable mixed conductive interphase for dendrite-free lithium metal batteries. ACS. Nano. 2022, 16, 13101-10.
70. Lu, X.; Wang, Y.; Xu, X.; Yan, B.; Wu, T.; Lu, L. Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries - review. Adv. Energy. Mater. 2023, 13, 2301746.
71. Hu, H.; Li, J.; Ji, X. Confining ionic liquids in developing quasi-solid-state electrolytes for lithium metal batteries. Chem. Eur. J. 2024, 30, e202302826.
72. Yu, D.; Tronstad, Z. C.; McCloskey, B. D. Lithium-ion transport and exchange between phases in a concentrated liquid electrolyte containing lithium-ion-conducting inorganic particles. ACS. Energy. Lett. 2024, 9, 1717-24.
73. Zhao, Y.; Song, Z.; Li, X.; et al. Metal organic frameworks for energy storage and conversion. Energy. Storage. Mater. 2016, 2, 35-62.
74. Pan, K.; Zhang, L.; Qian, W.; et al. A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Adv. Mater. 2020, 32, 2000399.
75. Bao, H.; Chen, D.; Liao, B.; Yi, Y.; Liu, R.; Sun, Y. Enhanced ionic conduction in metal-organic-framework-based quasi-solid-state electrolytes: mechanistic insights. Energy. Fuels. 2024, 38, 11275-83.
76. Kim, T.; Son, D.; Ono, L. K.; Jiang, Y.; Qi, Y. A solid-liquid hybrid electrolyte for lithium ion batteries enabled by a single-body polymer/indium tin oxide architecture. J. Phys. D:. Appl. Phys. 2021, 54, 475501.
77. Wu, Z.; Yi, Y.; Hai, F.; et al. A metal-organic framework based quasi-solid-state electrolyte enabling continuous ion transport for high-safety and high-energy-density lithium metal batteries. ACS. Appl. Mater. Interfaces. 2023, 15, 22065-74.
78. Han, D.; Zhao, Z.; Wang, W.; et al. Metal organic framework optimized hybrid solid polymer electrolytes with a high lithium-ion transference number and excellent electrochemical stability. Sustain. Energy. Fuels. 2022, 6, 4528-38.
79. Dong, P.; Zhang, X.; Hiscox, W.; et al. Toward high-performance metal-organic-framework-based quasi-solid-state electrolytes: tunable structures and electrochemical properties. Adv. Mater. 2023, 35, e2211841.
80. Li, J.; Weng, Z.; Qin, Z.; et al. Recent advances in multifunctional metal-organic frameworks for lithium metal batteries. Sci. China. Chem. 2024, 67, 759-73.
81. Liu, W.; Mi, Y.; Weng, Z.; Zhong, Y.; Wu, Z.; Wang, H. Functional metal-organic framework boosting lithium metal anode performance via chemical interactions. Chem. Sci. 2017, 8, 4285-91.
82. Zhang, Q.; Xiao, Y.; Li, Q.; et al. Design of thiol-lithium ion interaction in metal-organic framework for high-performance quasi-solid lithium metal batteries. Dalton. Trans. 2021, 50, 2928-35.
83. Yang, H.; Wu, N. Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: a review. Energy. Sci. Eng. 2022, 10, 1643-71.
84. Li, J.; Li, F.; Zhang, L.; Zhang, H.; Lassi, U.; Ji, X. Recent applications of ionic liquids in quasi-solid-state lithium metal batteries. Green. Chem. Eng. 2021, 2, 253-65.
85. Luo, B.; Wang, Q.; Ji, W.; et al. Suppressing lithium dendrite via hybrid interface layers for high performance quasi-solid-state lithium metal batteries. Chem. Eng. J. 2024, 492, 152152.
86. Zheng, B.; Zhu, J.; Wang, H.; et al. Stabilizing Li10SnP2S12/Li interface via an in situ formed solid electrolyte interphase layer. ACS. Appl. Mater. Interfaces. 2018, 10, 25473-82.
87. Wang, W.; Chai, M.; Lin, R.; et al. Amorphous MOFs for next generation supercapacitors and batteries. Energy. Adv. 2023, 2, 1591-603.
88. Duan, S.; Qian, L.; Zheng, Y.; et al. Mechanisms of the accelerated Li+ conduction in MOF-based solid-state polymer electrolytes for all-solid-state lithium metal batteries. Adv. Mater. 2024, 36, 2314120.
89. Loo, K. L.; Ho, J. W.; Chung, C.; Moon, M.; Yoo, P. J. Ion-transporting channel-embedded MOF-in-COF structures as composite quasi-solid electrolytes with highly enhanced electrochemical properties. J. Mater. Chem. A. 2024, 12, 7875-85.
90. Zhang, Z.; Tian, L.; Zhang, H.; et al. Hexagonal rodlike Cu-MOF-74-derived filler-reinforced composite polymer electrolyte for high-performance solid-state lithium batteries. ACS. Appl. Energy. Mater. 2022, 5, 1095-105.
91. Miner, E. M.; Dincă, M. Metal- and covalent-organic frameworks as solid-state electrolytes for metal-ion batteries. Phil. Trans. R. Soc. A. 2019, 377, 20180225.
92. Hong, C. N.; Crom, A. B.; Feldblyum, J. I.; Lukatskaya, M. R. Metal-organic frameworks for fast electrochemical energy storage: mechanisms and opportunities. Chem 2023, 9, 798-822.
93. Sun, R.; Dou, M.; Chen, Z.; et al. Engineering strategies of metal-organic frameworks toward advanced batteries. Battery. Energy. 2023, 2, 20220064.
94. Yu, J.; Lin, L.; Cheng, L.; Wu, Q.; Zhao, L.; Wang, H. Engineering the interfacial compatibility of a small-molecule quinone cathode toward stable quasi-solid-state lithium-organic batteries. ACS. Sustainable. Chem. Eng. 2024, 12, 9969-77.
95. Kim, M.; Çakmakçı, N.; Song, H.; Jeong, Y. Interfacially-enhanced quasi-solid electrolyte using ionic liquid for lithium-ion battery. Mater. Res. Bull. 2024, 170, 112588.
96. Eftekhari, A. Lithium batteries for electric vehicles: from economy to research strategy. ACS. Sustainable. Chem. Eng. 2019, 7, 5602-13.
97. Zhang, Q.; Liu, B.; Wang, J.; et al. The optimized interfacial compatibility of metal-organic frameworks enables a high-performance quasi-solid metal battery. ACS. Energy. Lett. 2020, 5, 2919-26.
98. Wei, Y.; Hu, F.; Li, Y.; et al. Constructing stable anodic interphase for quasi-solid-state lithium-sulfur batteries. ACS. Appl. Mater. Interfaces. 2020, 12, 39335-41.
99. Brus, J.; Czernek, J.; Urbanova, M.; Rohlíček, J.; Plecháček, T. Transferring lithium ions in the nanochannels of flexible metal-organic frameworks featuring superchaotropic metallacarborane guests: mechanism of ionic conductivity at atomic resolution. ACS. Appl. Mater. Interfaces. 2020, 12, 47447-56.
100. Giacobbe, C.; Lavigna, E.; Maspero, A.; Galli, S. Elucidating the CO2 adsorption mechanisms in the triangular channels of the bis(pyrazolate) MOF Fe2(BPEB)3 by in situ synchrotron X-ray diffraction and molecular dynamics simulations. J. Mater. Chem. A. 2017, 5, 16964-75.
101. Hou, T.; Fong, K. D.; Wang, J.; Persson, K. A. Correction: the solvation structure, transport properties and reduction behavior of carbonate-based electrolytes of lithium-ion batteries. Chem. Sci. 2022, 13, 8205.
102. Xu, W.; Pei, X.; Diercks, C. S.; Lyu, H.; Ji, Z.; Yaghi, O. M. A metal-organic framework of organic vertices and polyoxometalate linkers as a solid-state electrolyte. J. Am. Chem. Soc. 2019, 141, 17522-6.
103. Hou, T.; Xu, W.; Pei, X.; Jiang, L.; Yaghi, O. M.; Persson, K. A. Ionic conduction mechanism and design of metal-organic framework based quasi-solid-state electrolytes. J. Am. Chem. Soc. 2022, 144, 13446-50.
104. Su, N. C.; Noor, S. A. M.; Roslee, M. F.; Mohamed, N. S.; Ahmad, A.; Yahya, M. Z. A. Potential complexes of NaCF3SO3-tetraethylene dimethyl glycol ether (tetraglyme)-based electrolytes for sodium rechargeable battery application. Ionics 2019, 25, 541-9.
105. Singh, H. P.; Kumar, R.; Sekhon, S. S. Correlation between ionic conductivity and fluidity of polymer gel electrolytes containing NH4CF3SO3. Bull. Mater. Sci. 2005, 28, 467-72.
106. Castillo, J.; Santiago, A.; Judez, X.; et al. High energy density lithium-sulfur batteries based on carbonaceous two-dimensional additive cathodes. ACS. Appl. Energy. Mater. 2023, 6, 3579-89.
107. Kwon, W. J.; Kim, H.; Jung, K.; et al. Enhanced Li+ conduction in perovskite Li3xLa/3-x□1/3-2xTiO3 solid-electrolytes via microstructural engineering. J. Mater. Chem. A. 2017, 5, 6257-62.
108. Zhu, Y.; He, X.; Mo, Y. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A. 2016, 4, 3253-66.
109. Luo, W.; Gong, Y.; Zhu, Y.; et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv. Mater. 2017, 29.
110. Chen, L.; Li, Y.; Li, S.; Fan, L.; Nan, C.; Goodenough, J. B. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”. Nano. Energy. 2018, 46, 176-84.
111. Wan, J.; Xie, J.; Kong, X.; et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 2019, 14, 705-11.
112. Song, K.; Chen, W. An effective solid-electrolyte interphase for stable solid-state batteries. Chem 2021, 7, 3195-7.
113. Zhou, W.; Wang, S.; Li, Y.; Xin, S.; Manthiram, A.; Goodenough, J. B. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 2016, 138, 9385-8.
114. Kim, S. Y.; Cha, H.; Kostecki, R.; Chen, G. Composite cathode design for high-energy all-solid-state lithium batteries with long cycle life. ACS. Energy. Lett. 2023, 8, 521-8.
115. Zhou, B.; Fang, B.; Stosevski, I.; Bonakdarpour, A.; Wilkinson, D. P. Li host carbon materials as the negative electrode for a Li-metal battery - mechanistic and practical assessment. Meet. Abstr. 2022, MA2022-01, 667.
116. Zheng, Z.; Ye, H.; Guo, Z. Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium-sulfur batteries. Energy. Environ. Sci. 2021, 14, 1835-53.
117. Chen, Y.; Wen, K.; Chen, T.; Zhang, X.; Armand, M.; Chen, S. Recent progress in all-solid-state lithium batteries: The emerging strategies for advanced electrolytes and their interfaces. Energy. Storage. Mater. 2020, 31, 401-33.
118. Chen, S.; Wen, K.; Fan, J.; Bando, Y.; Golberg, D. Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes. J. Mater. Chem. A. 2018, 6, 11631-63.
119. Chen, R.; Qu, W.; Guo, X.; Li, L.; Wu, F. The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater. Horiz. 2016, 3, 487-516.
120. Ong, J. L.; Loy, A. C. M.; Teng, S. Y.; How, B. S. Future paradigm of 3D printed Ni-based metal organic framework catalysts for dry methane reforming: techno-economic and environmental analyses. ACS. Omega. 2022, 7, 15369-84.
121. Desantis, D.; Mason, J. A.; James, B. D.; Houchins, C.; Long, J. R.; Veenstra, M. Techno-economic analysis of metal-organic frameworks for hydrogen and natural gas storage. Energy. Fuels. 2017, 31, 2024-32.
122. Paul, T.; Juma, A.; Alqerem, R.; Karanikolos, G.; Arafat, H. A.; Dumée, L. F. Scale-up of metal-organic frameworks production: engineering strategies and prospects towards sustainable manufacturing. J. Environ. Chem. Eng. 2023, 11, 111112.
123. Chakraborty, D.; Yurdusen, A.; Mouchaham, G.; Nouar, F.; Serre, C. Large-scale production of metal-organic frameworks. Adv. Funct. Mater. 2024, 34, 2309089.
124. Yusuf, V. F.; Malek, N. I.; Kailasa, S. K. Review on metal-organic framework classification, synthetic approaches, and influencing factors: applications in energy, drug delivery, and wastewater treatment. ACS. Omega. 2022, 7, 44507-31.
125. Sun, C.; Liu, J.; Gong, Y.; Wilkinson, D. P.; Zhang, J. Recent advances in all-solid-state rechargeable lithium batteries. Nano. Energy. 2017, 33, 363-86.
126. Han, X.; Gong, Y.; Fu, K. K.; et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 2017, 16, 572-9.
127. Wang, C.; Fu, K.; Kammampata, S. P.; et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 2020, 120, 4257-300.
128. Kaur, G.; Sharma, S.; Singh, M. D.; Nalwa, K. S.; Sivasubramanian, S. C.; Dalvi, A. Ionic liquid composites with garnet-type Li6.75Al0.25La3Zr2O12: stability, electrical transport, and potential for energy storage applications. Mater. Chem. Phys. 2024, 317, 129205.
129. Zhang, Z.; Zhang, L.; Liu, Y.; et al. Interface-engineered Li7La3Zr2O12-based garnet solid electrolytes with suppressed li-dendrite formation and enhanced electrochemical performance. ChemSusChem 2018, 11, 3774-82.
130. Lin, R.; Jin, Y.; Li, Y.; Zhang, X.; Xiong, Y. Recent advances in ionic liquids-MOF hybrid electrolytes for solid-state electrolyte of lithium battery. Batteries 2023, 9, 314.
131. Subramani, R.; Hsu, S.; Chuang, Y.; Hsu, L.; Lu, K.; Chen, J. Fe-MIL-101 metal organic framework integrated solid polymer electrolytes for high-performance solid-state lithium metal batteries. J. Mater. Chem. A. 2024, 12, 7132-41.
132. Homann, G.; Stolz, L.; Nair, J.; Laskovic, I. C.; Winter, M.; Kasnatscheew, J. Poly(ethylene oxide)-based electrolyte for solid-state-lithium-batteries with high voltage positive electrodes: evaluating the role of electrolyte oxidation in rapid cell failure. Sci. Rep. 2020, 10, 4390.
133. Wang, Q.; Yang, A.; Ma, J.; Yao, M.; Geng, S.; Liu, F. Constructing PTFE@LATP composite solid electrolytes with three-dimensional network for high-performance lithium batteries. Electrochim. Acta. 2023, 467, 143138.
134. Liu, Y.; Xu, Y.; Zhang, Y.; Yu, C.; Sun, X. Thin Li1.3Al0.3Ti1.7(PO4)3-based composite solid electrolyte with a reinforced interface of in situ formed poly(1,3-dioxolane) for lithium metal batteries. J. Colloid. Interface. Sci. 2023, 644, 53-63.
135. Xu, Y.; Zhao, R.; Gao, L.; et al. A fiber-reinforced solid polymer electrolyte by in situ polymerization for stable lithium metal batteries. Nano. Res. 2023, 16, 9259-66.
136. Butreddy, P.; Wijesingha, M.; Laws, S.; Pathiraja, G.; Mo, Y.; Rathnayake, H. Insight into the isoreticularity of Li-MOFs for the design of low-density solid and quasi-solid electrolytes. Chem. Mater. 2023, 35, 9857-78.
137. Gong, X.; Xiao, Q.; Li, Q.; et al. Cross-linked electrospun gel polymer electrolytes for lithium-ion batteries. Chin. J. Polym. Sci. 2024, 42, 1021-8.
138. Lim, N.; Kim, E.; Park, J.; et al. Design of a bioinspired robust three-dimensional cross-linked polymer binder for high-performance Li-ion battery applications. ACS. Appl. Mater. Interfaces. 2023, 15, 54409-18.
139. Shin, W.; Cho, J.; Kannan, A. G.; Lee, Y.; Kim, D. Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO2 nanoparticles for lithium-ion polymer batteries. Sci. Rep. 2016, 6, BFsrep26332.
140. Röchow, E. T.; Coeler, M.; Pospiech, D.; et al. In situ preparation of crosslinked polymer electrolytes for lithium ion batteries: a comparison of monomer systems. Polymers 2020, 12, 1707.
141. Wen, J.; Zhao, Q.; Jiang, X.; et al. Graphene oxide enabled flexible peo-based solid polymer electrolyte for all-solid-state lithium metal battery. ACS. Appl. Energy. Mater. 2021, 4, 3660-9.
142. Rajamani, A.; Panneerselvam, T.; Murugan, R.; Ramaswamy, A. P. Electrospun derived polymer-garnet composite quasi solid state electrolyte with low interface resistance for lithium metal batteries. Energy 2023, 263, 126058.
143. Huang, Y.; Wang, Y.; Fu, Y. A thermoregulating separator based on black phosphorus/MOFs heterostructure for thermo-stable lithium-sulfur batteries. Chem. Eng. J. 2023, 454, 140250.
144. Lei, H.; Tu, J.; Li, S.; et al. MOF-based quasi-solid-state electrolyte for long-life Al-Se battery. J. Energy. Chem. 2023, 86, 237-45.
145. Zhang, Z.; Huang, Y.; Li, C.; Li, X. Metal-organic framework-supported poly(ethylene oxide) composite gel polymer electrolytes for high-performance lithium/sodium metal batteries. ACS. Appl. Mater. Interfaces. 2021, 13, 37262-72.
146. Li, J.; Gao, L.; Pan, F.; et al. Engineering strategies for suppressing the shuttle effect in lithium-sulfur batteries. Nano-Micro. Lett. 2023, 16, 12.
147. Aslam, M. K.; Niu, Y.; Hussain, T.; et al. How to avoid dendrite formation in metal batteries: innovative strategies for dendrite suppression. Nano. Energy. 2021, 86, 106142.
148. Bai, S.; Kim, B.; Kim, C.; et al. Permselective metal-organic framework gel membrane enables long-life cycling of rechargeable organic batteries. Nat. Nanotechnol. 2021, 16, 77-84.
149. Liu, Q.; Yang, L.; Mei, Z.; et al. Constructing host-guest recognition electrolytes promotes the Li+ kinetics in solid-state batteries. Energy. Environ. Sci. 2024, 17, 780-90.
150. Yang, L.; Chen, J.; Park, S.; Wang, H. Recent progress on metal-organic framework derived carbon and their composites as anode materials for potassium-ion batteries. Energy. Mater. 2023, 3, 300042.
151. Chen, J.; Adit, G.; Li, L.; Zhang, Y.; Chua, D. H. C.; Lee, P. S. Optimization strategies toward functional sodium-ion batteries. Energy. Environ. Mater. 2023, 6, e12633.
152. Lu, X.; Wu, H.; Kong, D.; Li, X.; Shen, L.; Lu, Y. Facilitating lithium-ion conduction in gel polymer electrolyte by metal-organic frameworks. ACS. Mater. Lett. 2020, 2, 1435-41.
153. Fu, X.; Hurlock, M. J.; Ding, C.; Li, X.; Zhang, Q.; Zhong, W. H. MOF-enabled ion-regulating gel electrolyte for long-cycling lithium metal batteries under high voltage. Small 2022, 18, 2106225.
154. Wang, D.; Jin, B.; Yao, X.; et al. Bio-inspired polydopamine-modified ZIF-90-supported gel polymer electrolyte for high-safety lithium metal batteries. ACS. Appl. Energy. Mater. 2023, 6, 11146-56.
155. Murray, L. J.; Dincă, M.; Long, J. R. Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1294-314.
156. Li, J. R.; Sculley, J.; Zhou, H. C. Metal-organic frameworks for separations. Chem. Rev. 2012, 112, 869-932.
157. Ma, L.; Abney, C.; Lin, W. Enantioselective catalysis with homochiral metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1248-56.
158. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van, D. R. P.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105-25.
159. Min, K. S.; Suh, M. P. Silver(I)-polynitrile network solids for anion exchange: anion-induced transformation of supramolecular structure in the crystalline state. J. Am. Chem. Soc. 2000, 122, 6834-40.
160. Horike, S.; Umeyama, D.; Kitagawa, S. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks. Acc. Chem. Res. 2013, 46, 2376-84.
161. Yang, H.; Liu, B.; Bright, J.; et al. A single-ion conducting UiO-66 metal-organic framework electrolyte for all-solid-state lithium batteries. ACS. Appl. Energy. Mater. 2020, 3, 4007-13.
162. Liu, X. Metal-organic framework UiO-66 membranes. Front. Chem. Sci. Eng. 2020, 14, 216-32.
163. Taylor, J. M.; Dekura, S.; Ikeda, R.; Kitagawa, H. Defect control to enhance proton conductivity in a metal-organic framework. Chem. Mater. 2015, 27, 2286-9.
164. Chen, X.; Li, G. Proton conductive Zr-based MOFs. Inorg. Chem. Front. 2020, 7, 3765-84.
165. Liu, L.; Sun, C. Flexible quasi-solid-state composite electrolyte membrane derived from a metal-organic framework for lithium-metal batteries. ChemElectroChem 2020, 7, 707-15.
166. Zhou, L.; Pan, H.; Yin, G.; et al. Tailoring the function of battery separators via the design of MOF coatings. Adv. Funct. Mater. 2024, 34, 2314246.
167. Wu, X.; Gao, Y.; Bi, J. Understanding the structure-dependent adsorption behavior of four zirconium-based porphyrinic MOFs for the removal of pharmaceuticals. Microporous. Mesoporous. Mater. 2024, 363, 112827.
168. Furukawa, H.; Gándara, F.; Zhang, Y. B.; et al. Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 2014, 136, 4369-81.
169. Sun, C.; Zhang, J. H.; Yuan, X. F.; et al. ZIF-8-based quasi-solid-state electrolyte for lithium batteries. ACS. Appl. Mater. Interfaces. 2019, 11, 46671-7.
170. Zhu, X.; Chang, Z.; Yang, H.; He, P.; Zhou, H. Highly safe and stable lithium-metal batteries based on a quasi-solid-state electrolyte. J. Mater. Chem. A. 2022, 10, 651-63.
171. Shieh, F. K.; Wang, S. C.; Leo, S. Y.; Wu, K. C. Water-based synthesis of zeolitic imidazolate framework-90 (ZIF-90) with a controllable particle size. Chem. Eur. J. 2013, 19, 11139-42.
172. Kida, K.; Okita, M.; Fujita, K.; Tanaka, S.; Miyake, Y. Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm 2013, 15, 1794-801.
173. Yu, T.; Ma, H.; Zhang, H.; Xiong, M.; Liu, Y.; Li, F. Fabrication and characterization of purified esterase-embedded zeolitic imidazolate frameworks for the removal and remediation of herbicide pollution from soil. J. Environ. Manage. 2021, 288, 112450.
174. Deneff, J. I.; Butler, K. S.; Kotula, P. G.; Rue, B. E.; Sava, G. D. F. Expanding the ZIFs repertoire for biological applications with the targeted synthesis of ZIF-20 nanoparticles. ACS. Appl. Mater. Interfaces. 2021, 13, 27295-304.
175. Xing, J.; Schweighauser, L.; Okada, S.; Harano, K.; Nakamura, E. Atomistic structures and dynamics of prenucleation clusters in MOF-2 and MOF-5 syntheses. Nat. Commun. 2019, 10, 3608.
176. Xu, G.; Yamada, T.; Otsubo, K.; Sakaida, S.; Kitagawa, H. Facile “modular assembly” for fast construction of a highly oriented crystalline MOF nanofilm. J. Am. Chem. Soc. 2012, 134, 16524-7.
177. Shen, L.; Wu, H. B.; Liu, F.; et al. Creating lithium-ion electrolytes with biomimetic ionic channels in metal-organic frameworks. Adv. Mater. 2018, 30, 1707476.
178. Wang, X. G.; Cheng, Q.; Yu, Y.; Zhang, X. Z. Controlled nucleation and controlled growth for size predicable synthesis of nanoscale metal-organic frameworks (MOFs): a general and scalable approach. Angew. Chem. Int. Ed. 2018, 57, 7836-40.
179. Qiu, S.; Du, J.; Xiao, Y.; Zhao, Q.; He, G. Hierarchical porous HKUST-1 fabricated by microwave-assisted synthesis with CTAB for enhanced adsorptive removal of benzothiophene from fuel. Sep. Purif. Technol. 2021, 271, 118868.
180. Chen, Y.; Qiao, Z.; Lv, D.; et al. Efficient adsorptive separation of C3H6 over C3H8 on flexible and thermoresponsive CPL-1. Chem. Eng. J. 2017, 328, 360-7.
181. Xiang, H.; Ameen, A.; Shang, J.; et al. Synthesis and modification of moisture-stable coordination pillared-layer metal-organic framework (CPL-MOF) CPL-2 for ethylene/ethane separation. Microporous. Mesoporous. Mater. 2020, 293, 109784.
182. Garai, B.; Bon, V.; Krause, S.; et al. Tunable flexibility and porosity of the metal-organic framework DUT-49 through postsynthetic metal exchange. Chem. Mater. 2020, 32, 889-96.
183. Kolbe, F.; Krause, S.; Bon, V.; Senkovska, I.; Kaskel, S.; Brunner, E. High-pressure in situ 129Xe NMR spectroscopy: insights into switching mechanisms of flexible metal-organic frameworks isoreticular to DUT-49. Chem. Mater. 2019, 31, 6193-201.
184. Wang, C.; Zhang, F.; Yang, J.; Li, J. Rapid and HF-free synthesis of MIL-100(Cr) via steam-assisted method. Mater. Lett. 2019, 252, 286-8.
185. Celeste, A.; Paolone, A.; Itié, J. P.; et al. Mesoporous metal-organic framework MIL-101 at high pressure. J. Am. Chem. Soc. 2020, 142, 15012-9.
186. Hu, J.; Chen, Y.; Zhang, H.; Chen, Z. Controlled syntheses of Mg-MOF-74 nanorods for drug delivery. J. Solid. State. Chem. 2021, 294, 121853.
187. Qi, C.; Xu, L.; Wang, J.; et al. Titanium-containing metal-organic framework modified separator for advanced lithium-sulfur batteries. ACS. Sustainable. Chem. Eng. 2020, 8, 12968-75.
188. Wang, Z.; Li, Z.; Zhang, X. G.; et al. Tailoring multiple sites of metal-organic frameworks for highly efficient and reversible ammonia adsorption. ACS. Appl. Mater. Interfaces. 2021, 13, 56025-34.
189. Su, Y.; Yuan, G.; Hu, J.; et al. Thiosalicylic-acid-mediated coordination structure of nickel center via thermodynamic modulation for aqueous Ni-Zn batteries. Adv. Mater. 2024, 36, 2406094.
190. Leng, X.; Zeng, J.; Yang, M.; et al. Bimetallic Ni-Co MOF@PAN modified electrospun separator enhances high-performance lithium-sulfur batteries. J. Energy. Chem. 2023, 82, 484-96.
191. Razaq, R.; Din, M. M. U.; Småbråten, D. R.; et al. Synergistic effect of bimetallic MOF modified separator for long cycle life lithium-sulfur batteries. Adv. Energy. Mater. 2024, 14, 2302897.
192. Liu, Y.; Li, L.; Wen, A.; Cao, F.; Ye, H. A Janus MXene/MOF separator for the all-in-one enhancement of lithium-sulfur batteries. Energy. Storage. Mater. 2023, 55, 652-9.
193. Han, D. D.; Wang, Z. Y.; Pan, G. L.; Gao, X. P. Metal-organic-framework-based gel polymer electrolyte with immobilized anions to stabilize a lithium anode for a quasi-solid-state lithium-sulfur battery. ACS. Appl. Mater. Interfaces. 2019, 11, 18427-35.
194. Férey, G.; Mellot-Draznieks, C.; Serre, C.; et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040-2.
195. Xu, Z.; Zhao, Y. Y.; Chen, L.; et al. Thermally activated bipyridyl-based Mn-MOFs with Lewis acid-base bifunctional sites for highly efficient catalytic cycloaddition of CO2 with epoxides and Knoevenagel condensation reactions. Dalton. Trans. 2023, 52, 3671-81.
196. Zhang, X.; Zhan, Z.; Li, Z.; Di, L. Thermal activation of CuBTC MOF for CO oxidation: the effect of activation atmosphere. Catalysts 2017, 7, 106.
197. He, Z.; Zhu, X.; Song, Y.; et al. Separator functionalization realizing stable zinc anode through microporous metal-organic framework with special functional group. Energy. Storage. Mater. 2025, 74, 103886.
198. Planchais, A.; Devautour-vinot, S.; Salles, F.; et al. A joint experimental/computational exploration of the dynamics of confined water/Zr-based MOFs systems. J. Phys. Chem. C. 2014, 118, 14441-8.
199. Yang, P.; Zhang, K.; Liu, S.; et al. Ionic selective separator design enables long-life zinc-iodine batteries via synergistic anode stabilization and polyiodide shuttle suppression. Adv. Funct. Mater. 2024, 34, 2410712.
200. Ruan, Z.; Wang, X.; Yuan, X. Improved catalytic performance and stability of defected UiO-66-SO3H in the esterification reaction of cyclohexene with cyclohexanecarboxylic acid. J. Porous. Mater. 2022, 29, 1957-68.
201. Morris, W.; Volosskiy, B.; Demir, S.; et al. Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks. Inorg. Chem. 2012, 51, 6443-5.
202. Kim, H. K.; Yun, W. S.; Kim, M. B.; et al. A chemical route to activation of open metal sites in the copper-based metal-organic framework materials HKUST-1 and Cu-MOF-2. J. Am. Chem. Soc. 2015, 137, 10009-15.
203. Li, H.; Eddaoudi, M.; O’keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276-9.
204. Liu, J.; Culp, J. T.; Natesakhawat, S.; et al. Experimental and theoretical studies of gas adsorption in Cu3(BTC)2: an effective activation procedure. J. Phys. Chem. C. 2007, 111, 9305-13.
205. Lohe, M. R.; Rose, M.; Kaskel, S. Metal-organic framework (MOF) aerogels with high micro- and macroporosity. Chem. Commun. 2009, 6056-8.
206. Nelson, A. P.; Farha, O. K.; Mulfort, K. L.; Hupp, J. T. Supercritical processing as a route to high internal surface areas and permanent microporosity in metal-organic framework materials. J. Am. Chem. Soc. 2009, 131, 458-60.
207. Mondloch, J. E.; Karagiaridi, O.; Farha, O. K.; Hupp, J. T. Activation of metal-organic framework materials. CrystEngComm 2013, 15, 9258.
208. Oh, H.; Maurer, S.; Balderas-xicohtencatl, R.; et al. Efficient synthesis for large-scale production and characterization for hydrogen storage of ligand exchanged MOF-74/174/184-M (M = Mg2+, Ni2+). Int. J. Hydrogen. Energy. 2017, 42, 1027-35.
209. Batten, M. P.; Rubio-martinez, M.; Hadley, T.; et al. Continuous flow production of metal-organic frameworks. Curr. Opin. Chem. Eng. 2015, 8, 55-9.
210. Rubio-Martinez, M.; Avci-Camur, C.; Thornton, A. W.; Imaz, I.; Maspoch, D.; Hill, M. R. New synthetic routes towards MOF production at scale. Chem. Soc. Rev. 2017, 46, 3453-80.
211. Gaab, M.; Trukhan, N.; Maurer, S.; Gummaraju, R.; Müller, U. The progression of Al-based metal-organic frameworks-from academic research to industrial production and applications. Microporous. Mesoporous. Mater. 2012, 157, 131-6.
212. Vepsäläinen, M.; Macedo, D. S.; Gong, H.; Rubio-martinez, M.; Bayatsarmadi, B.; He, B. Electrosynthesis of HKUST-1 with flow-reactor post-processing. Appl. Sci. 2021, 11, 3340.
213. Ren, J.; Dyosiba, X.; Musyoka, N. M.; Langmi, H. W.; Mathe, M.; Liao, S. Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs). Coord. Chem. Rev. 2017, 352, 187-219.
214. Mckinstry, C.; Cathcart, R. J.; Cussen, E. J.; Fletcher, A. J.; Patwardhan, S. V.; Sefcik, J. Scalable continuous solvothermal synthesis of metal organic framework (MOF-5) crystals. Chem. Eng. J. 2016, 285, 718-25.
215. Klimakow, M.; Klobes, P.; Thünemann, A. F.; Rademann, K.; Emmerling, F. Mechanochemical synthesis of metal-organic frameworks: a fast and facile approach toward quantitative yields and high specific surface areas. Chem. Mater. 2010, 22, 5216-21.
216. Tanaka, S.; Kida, K.; Nagaoka, T.; Ota, T.; Miyake, Y. Mechanochemical dry conversion of zinc oxide to zeolitic imidazolate framework. Chem. Commun. 2013, 49, 7884-6.
217. Chen, Z.; Wang, W.; Yao, J.; et al. Toxicity of a molluscicide candidate PPU07 against Oncomelania hupensis (Gredler, 1881) and local fish in field evaluation. Chemosphere 2019, 222, 56-61.
218. Cadot, S.; Veyre, L.; Luneau, D.; Farrusseng, D.; Alessandra, Q. E. A water-based and high space-time yield synthetic route to MOF Ni2(dhtp) and its linker 2,5-dihydroxyterephthalic acid. J. Mater. Chem. A. 2014, 2, 17757-63.
219. Sánchez, L.; Acevedo-peña, P.; Aguilar-frutis, M. Á.; Reguera, E. Improving Mg2+ ionic conductivity in ZIF-8 by Cu (II) doping and mbIm incorporation into the framework. Solid. State. Ionics. 2024, 407, 116497.
220. Mu, A. U.; Cai, G.; Chen, Z. Metal-organic frameworks for the enhancement of lithium-based batteries: a mini review on emerging functional designs. Adv. Sci. 2024, 11, 2305280.
221. Zhang, M.; Wu, L.; Zhu, B.; Liu, Y. Performance enhancement of lithium-metal batteries using the three-dimensional porous network structure a metal-organic framework-aramid cellulose-MXene composite separator. Int. J. Hydrogen. Energy. 2024, 59, 263-71.
222. Shang, W.; Chen, Y.; Han, J.; Ouyang, P.; Fang, C.; Du, J. Dendrite-free Li anode enabled by a metal-organic framework-modified solid polymer electrolyte for high-performance lithium metal batteries. ACS. Appl. Energy. Mater. 2020, 3, 12351-9.
223. Wang, Z.; Du, Z.; Liu, Y.; et al. Metal-organic frameworks and their derivatives for optimizing lithium metal anodes. eScience 2024, 4, 100189.
224. Lee, D. J.; Yu, X.; Sikma, R. E.; et al. Holistic design consideration of metal-organic framework-based composite membranes for lithium-sulfur batteries. ACS. Appl. Mater. Interfaces. 2022, 14, 34742-9.
225. Phung, J.; Zhang, X.; Deng, W.; Li, G. An overview of MOF-based separators for lithium-sulfur batteries. Sustain. Mater. Technol. 2022, 31, e00374.
226. Peng, Y.; Xu, J.; Xu, J.; et al. Metal-organic framework (MOF) composites as promising materials for energy storage applications. Adv. Colloid. Interface. Sci. 2022, 307, 102732.
227. Bai, S.; Liu, X.; Zhu, K.; Wu, S.; Zhou, H. Metal-organic framework-based separator for lithium-sulfur batteries. Nat. Energy. 2016, 1, 16094.
228. Li, Y. W.; Zhang, W. J.; Li, J.; et al. Fe-MOF-derived efficient ORR/OER bifunctional electrocatalyst for rechargeable zinc-air batteries. ACS. Appl. Mater. Interfaces. 2020, 12, 44710-9.
229. He, J.; Chen, Y.; Manthiram, A. Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li-S batteries. Energy. Environ. Sci. 2018, 11, 2560-8.
230. Li, X.; Zhang, F.; Zhang, M.; Zhou, Z.; Zhou, X. Chromium-based metal-organic framework coated separator for improving electrochemical performance and safety of lithium-ion battery. J. Energy. Storage. 2023, 59, 106473.
231. Chang, Z.; Qiao, Y.; Deng, H.; Yang, H.; He, P.; Zhou, H. A liquid electrolyte with de-solvated lithium ions for lithium-metal battery. Joule 2020, 4, 1776-89.
232. Sheng, L.; Wang, Q.; Liu, X.; et al. Suppressing electrolyte-lithium metal reactivity via Li+-desolvation in uniform nano-porous separator. Nat. Commun. 2022, 13, 172.
233. Hu, Q.; Han, G.; Wang, A.; et al. Functionalized MOF enables stable cycling of nickel-rich layered oxides for lithium-ion batteries. Chem. Eng. J. 2024, 497, 154608.
234. Chang, Z.; Yang, H.; Pan, A.; He, P.; Zhou, H. An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell. Nat. Commun. 2022, 13, 6788.
235. Fan, Y.; Niu, Z.; Zhang, F.; Zhang, R.; Zhao, Y.; Lu, G. Suppressing the shuttle effect in lithium-sulfur batteries by a UiO-66-modified polypropylene separator. ACS. Omega. 2019, 4, 10328-35.
236. Han, J.; Gao, S.; Wang, R.; et al. Investigation of the mechanism of metal-organic frameworks preventing polysulfide shuttling from the perspective of composition and structure. J. Mater. Chem. A. 2020, 8, 6661-9.
237. Zhu, F.; Bao, H.; Wu, X.; et al. High-performance metal-organic framework-based single ion conducting solid-state electrolytes for low-temperature lithium metal batteries. ACS. Appl. Mater. Interfaces. 2019, 11, 43206-13.
238. Fan, Z.; He, L.; Li, X.; Xin, X. Inhibiting I-/I3- redox shuttling in Li-O2 batteries by MOF decorated separator. Mater. Res. Bull. 2023, 167, 112412.
239. Aubrey, M. L.; Ameloot, R.; Wiers, B. M.; Long, J. R. Metal-organic frameworks as solid magnesium electrolytes. Energy. Environ. Sci. 2014, 7, 667-71.
240. Ameloot, R.; Aubrey, M.; Wiers, B. M.; et al. Ionic conductivity in the metal-organic framework UiO-66 by dehydration and insertion of lithium tert-butoxide. Chemistry 2013, 19, 5533-6.
241. Zettl, R.; Lunghammer, S.; Gadermaier, B.; et al. High Li+ and Na+ conductivity in new hybrid solid electrolytes based on the porous MIL-121 metal organic framework. Adv. Energy. Mater. 2021, 11, 2003542.
242. Lu, G.; Wei, H.; Shen, C.; et al. Bifunctional MOF doped PEO composite electrolyte for long-life cycle solid lithium ion battery. ACS. Appl. Mater. Interfaces. 2022, 14, 45476-83.
243. Guo, Y.; Sun, M.; Liang, H.; et al. Blocking polysulfides and facilitating lithium-ion transport: polystyrene sulfonate@HKUST-1 membrane for lithium-sulfur batteries. ACS. Appl. Mater. Interfaces. 2018, 10, 30451-9.
244. Kim, S. H.; Yeon, J. S.; Kim, R.; Choi, K. M.; Park, H. S. A functional separator coated with sulfonated metal-organic framework/Nafion hybrids for Li-S batteries. J. Mater. Chem. A. 2018, 6, 24971-8.
245. Chang, Z.; Qiao, Y.; Wang, J.; Deng, H.; He, P.; Zhou, H. Fabricating better metal-organic frameworks separators for Li-S batteries: pore sizes effects inspired channel modification strategy. Energy. Storage. Mater. 2020, 25, 164-71.
246. Wang, Z.; Huang, W.; Hua, J.; et al. An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li-S batteries. Small. Methods. 2020, 4, 2000082.
247. Zhou, Z.; Li, Y.; Fang, T.; et al. MOF-derived Co3O4 polyhedrons as efficient polysulfides barrier on polyimide separators for high temperature lithium-sulfur batteries. Nanomaterials 2019, 9, 1574.
248. Suriyakumar, S.; Stephan, A. M.; Angulakshmi, N.; Hassan, M. H.; Alkordi, M. H. Metal-organic framework@SiO2 as permselective separator for lithium-sulfur batteries. J. Mater. Chem. A. 2018, 6, 14623-32.
249. Bai, S.; Zhu, K.; Wu, S.; et al. A long-life lithium-sulphur battery by integrating zinc-organic framework based separator. J. Mater. Chem. A. 2016, 4, 16812-7.
250. Zhou, C.; He, Q.; Li, Z.; et al. A robust electrospun separator modified with in situ grown metal-organic frameworks for lithium-sulfur batteries. Chem. Eng. J. 2020, 395, 124979.
251. Huang, J. Q.; Zhuang, T. Z.; Zhang, Q.; Peng, H. J.; Chen, C. M.; Wei, F. Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries. ACS. Nano. 2015, 9, 3002-11.
252. Lammert, M.; Glißmann, C.; Reinsch, H.; Stock, N. Synthesis and characterization of new Ce(IV)-MOFs exhibiting various framework topologies. Cryst. Growth. Des. 2017, 17, 1125-31.
253. Lee, D. H.; Ahn, J. H.; Park, M.; Eftekhari, A.; Kim, D. Metal-organic framework/carbon nanotube-coated polyethylene separator for improving the cycling performance of lithium-sulfur cells. Electrochim. Acta. 2018, 283, 1291-9.
254. Jiang, G.; Zheng, N.; Chen, X.; et al. In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. Chem. Eng. J. 2019, 373, 1309-18.
255. Wang, B.; Liu, J.; Mao, C.; et al. A MOF-gel based separator for suppressing redox mediator shuttling in Li-O2 batteries. Small 2024, 20, 2401231.
256. Guang, Z.; Huang, Y.; Chen, C.; Liu, X.; Xu, Z.; Dou, W. Engineering a light-weight, thin and dual-functional interlayer as “polysulfides sieve” capable of synergistic adsorption for high-performance lithium-sulfur batteries. Chem. Eng. J. 2020, 383, 123163.
257. Li, B.; Pan, Y.; Luo, B.; et al. MOF-derived NiCo2S4@C as a separator modification material for high-performance lithium-sulfur batteries. Electrochim. Acta. 2020, 344, 135811.
258. Li, W.; Ye, Y.; Qian, J.; et al. Oxygenated nitrogen-doped microporous nanocarbon as a permselective interlayer for ultrastable lithium-sulfur batteries. ChemElectroChem 2019, 6, 1094-100.
259. Cai, J.; Song, Y.; Chen, X.; et al. MOF-derived conductive carbon nitrides for separator-modified Li-S batteries and flexible supercapacitors. J. Mater. Chem. A. 2020, 8, 1757-66.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.