REFERENCES
1. Sun, Y.; Liu, N.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy. 2016, 1, 1671.
2. Pan, H.; Hu, Y.; Chen, L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy. Environ. Sci. 2013, 6, 2338-60.
3. Zhao, L.; Tao, Y.; Zhang, Y.; et al. A critical review on room-temperature sodium-sulfur batteries: from research advances to practical perspectives. Adv. Mater. 2024, 36, 2402337.
4. Jin, F.; Wang, B.; Wang, J.; et al. Boosting electrochemical kinetics of S cathodes for room temperature Na/S batteries. Matter 2021, 4, 1768-800.
5. Zhang, S.; Yao, Y.; Yu, Y. Frontiers for room-temperature sodium-sulfur batteries. ACS. Energy. Lett. 2021, 6, 529-36.
7. Yang, J.; Han, H.; Repich, H.; et al. Recent progress on the design of hollow carbon spheres to host sulfur in room-temperature sodium-sulfur batteries. New. Carbon. Mater. 2020, 35, 630-45.
8. Yang, X.; Luo, J.; Sun, X. Towards high-performance solid-state Li-S batteries: from fundamental understanding to engineering design. Chem. Soc. Rev. 2020, 49, 2140-95.
9. Xiao, Y.; Zheng, Y.; Yao, G.; et al. Defect engineering of a TiO2 anatase/rutile homojunction accelerating sulfur redox kinetics for high-performance Na-S batteries. Dalton. Trans. 2024, 53, 8168-76.
10. Ye, X.; Ruan, J.; Pang, Y.; et al. Enabling a stable room-temperature sodium-sulfur battery cathode by building heterostructures in multichannel carbon fibers. ACS. Nano. 2021, 15, 5639-48.
11. Asif, M.; Ali, Z.; Qiu, H.; Rashad, M.; Hou, Y. Confined polysulfide shuttle by nickel disulfide nanoparticles encapsulated in graphene nanoshells synthesized by cooking oil. ACS. Appl. Energy. Mater. 2020, 3, 3541-52.
12. Sadaqat, A.; Ali, G.; ul, H. M.; Liaqat, A.; Khalid, S.; Farooq, K. M. Binary Co3S4/SnS chalcogenide composites anchored on graphene oxide and carbon nanotubes as anodes for Na-ion batteries. Appl. Surf. Sci. 2024, 665, 160323.
13. Guo, Q.; Ma, Y.; Chen, T.; et al. Cobalt sulfide quantum dot embedded N/S-doped carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries. ACS. Nano. 2017, 11, 12658-67.
14. Wang, L.; Wang, H.; Zhang, S.; et al. Manipulating the electronic structure of nickel via alloying with iron: toward high-kinetics sulfur cathode for Na-S batteries. ACS. Nano. 2021, 15, 15218-28.
15. Dai, X.; Wang, Z.; Wang, X.; et al. MXene-based sodium-sulfur batteries: synthesis, applications and perspectives. Rare. Met. 2025, 44, 1522-55.
16. Huo, X.; Liu, Y.; Li, R.; Li, J. Two-dimensional Ti3C2Tx@S as cathode for room temperature sodium-sulfur batteries. Ionics 2019, 25, 5373-82.
17. Reddy, B.; Cho, G.; Reddy, N.; et al. Layered-like structure of TiO2-Ti3C2 Mxene as an efficient sulfur host for room-temperature sodium-sulfur batteries. J. Alloys. Compd. 2021, 883, 160910.
18. Zhang, Y.; Ma, C.; He, W.; et al. MXene and MXene-based materials for lithium-sulfur batteries. Prog. Nat. Sci. Mater. Int. 2021, 31, 501-13.
19. Zhang, S.; Zhong, N.; Zhou, X.; et al. Comprehensive design of the high-sulfur-loading Li-S battery based on MXene nanosheets. Nano-Micro. Lett. 2020, 12, 112.
20. Zhao, W.; Lei, Y.; Zhu, Y.; et al. Hierarchically structured Ti3C2T MXene paper for Li-S batteries with high volumetric capacity. Nano. Energy. 2021, 86, 106120.
21. Li, H.; Zhou, H.; Zhuang, L.; Liu, T.; Han, W.; Huang, H. Enhanced ion diffusion in flexible Ti3C2TX MXene film for high-performance supercapacitors. Adv. Energy. Sustain. Res. 2022, 3, 2100216.
22. Yu, X.; Yang, Y.; Si, L.; Cai, J.; Lu, X.; Sun, Z. V4C3TX MXene: first-principles computational and separator modification study on immobilization and catalytic conversion of polysulfide in Li-S batteries. J. Colloid. Interface. Sci. 2022, 627, 992-1002.
23. Ghidiu, M.; Barsoum, M. W. The {110} reflection in X-ray diffraction of MX ene films: misinterpretation and measurement via non-standard orientation. J. Am. Ceram. Soc. 2017, 100, 5395-9.
24. Liu, W.; Zheng, Y.; Zhang, Z.; et al. Ultrahigh gravimetric and volumetric capacitance in Ti3C2Tx MXene negative electrode enabled by surface modification and in-situ intercalation. J. Power. Sources. 2022, 521, 230965.
25. Feng, J.; Liu, W.; Shi, C.; et al. Enabling fast diffusion/conversion kinetics by thiourea-induced wrinkled N, S co-doped functional MXene for lithium-sulfur battery. Energy. Storage. Mater. 2024, 67, 103328.
26. Wang, Z.; Jiang, H.; Wei, C.; et al. Ultrasmall CoFe bimetallic alloy anchored on fluoride-free MXene by one-pot etching strategy for the barrier-adsorption-catalyst functions of polysulfides in lithium-sulfur batteries. Adv. Funct. Mater. 2024, 34, 2315178.
27. Hui, X.; Zhao, R.; Zhang, P.; Li, C.; Wang, C.; Yin, L. Low-temperature reduction strategy synthesized Si/Ti3C2 MXene composite anodes for high-performance Li-ion batteries. Adv. Energy. Mater. 2019, 9, 1901065.
28. Huang, P.; Zhang, S.; Ying, H.; et al. Fabrication of Fe nanocomplex pillared few-layered Ti3C2Tx MXene with enhanced rate performance for lithium-ion batteries. Nano. Res. 2021, 14, 1218-27.
29. Mou, J.; Li, Y.; Liu, T.; et al. Metal-organic frameworks-derived nitrogen-doped porous carbon nanocubes with embedded Co nanoparticles as efficient sulfur immobilizers for room temperature sodium-sulfur batteries. Small. Methods. 2021, 5, 2100455.
30. Qi, W.; Wu, W.; Cao, B.; Zhang, Y.; Wu, Y. Fabrication of CoFe/N-doped mesoporous carbon hybrids from Prussian blue analogous as high performance cathodes for lithium-sulfur batteries. Int. J. Hydrogen. Energy. 2019, 44, 20257-66.
31. Wang, Y.; Zhu, L.; Wang, J.; Zhang, Z.; Yu, J.; Yang, Z. Enhanced chemisorption and catalytic conversion of polysulfides via CoFe@NC nanocubes modified separator for superior Li-S batteries. Chem. Eng. J. 2022, 433, 133792.
32. Lu, C.; Li, A.; Zhai, T.; et al. Interface design based on Ti3C2 MXene atomic layers of advanced battery-type material for supercapacitors. Energy. Storage. Mater. 2020, 26, 472-82.
33. Zhang, G.; Yang, H.; Zhou, H.; et al. MXene-mediated interfacial growth of 2D-2D heterostructured nanomaterials as cathodes for zn-based aqueous batteries. Angew. Chem. Int. Ed. 2024, 63, e202401903.
34. Yu, M.; Zhou, S.; Wang, Z.; Zhao, J.; Qiu, J. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano. Energy. 2018, 44, 181-90.
35. Li, H.; Fan, K.; Xiong, P.; et al. Selective grafting of phosphorus onto Ti3C2Tx MXene enables a two-proton process and enhanced charge storage. J. Mater. Chem. A. 2024, 12, 3449-59.
36. He, Y.; Zhao, Y.; Zhang, Y.; et al. Building flexibly porous conductive skeleton inlaid with surface oxygen-dominated MXene as an amphiphilic nanoreactor for stable Li-S pouch batteries. Energy. Storage. Mater. 2022, 47, 434-44.
37. Zhang, G.; Chen, X.; Yu, X.; et al. Crystalline-amorphous heterostructure on the phosphatized P-CoS2/CNT for augmenting the catalytic conversion kinetics of Li-S batteries. Chem. Eng. J. 2024, 488, 150696.
38. Yao, Y.; Wang, S.; Jia, X.; et al. Freestanding sandwich-like hierarchically TiS2-TiO2/Mxene bi-functional interlayer for stable Li-S batteries. Carbon 2022, 188, 533-42.
39. Park, S. J.; Choi, Y. J.; Kim, H.; et al. Stable immobilization of lithium polysulfides using three-dimensional ordered mesoporous Mn2O3 as the host material in lithium-sulfur batteries. Carbon. Energy. 2024, 6, e487.
40. Ou, L.; Mou, J.; Peng, J.; Zhang, Y.; Chen, Y.; Huang, J. Heterostructured Co/CeO2-decorating N-doped porous carbon nanocubes as efficient sulfur hosts with enhanced rate capability and cycling durability toward room-temperature Na-S batteries. ACS. Appl. Mater. Interfaces. 2024, 16, 3302-10.
41. Mou, J.; Li, Y.; Ou, L.; Huang, J. A highly-efficient electrocatalyst for room temperature sodium-sulfur batteries: assembled nitrogen-doped hollow porous carbon spheres decorated with ultrafine α-MoC1-x nanoparticles. Energy. Storage. Mater. 2022, 52, 111-9.
42. Liu, H.; Lai, W. H.; Yang, Q.; et al. Understanding Sulfur redox mechanisms in different electrolytes for room-temperature Na-S batteries. Nano-Micro. Lett. 2021, 13, 121.
43. Tang, K.; Peng, X.; Zhang, Z.; et al. A highly dispersed cobalt electrocatalyst with electron-deficient centers induced by boron toward enhanced adsorption and electrocatalysis for room-temperature sodium-sulfur batteries. Small 2024, 20, e2311151.
44. Zhou, X.; Yu, Z.; Yao, Y.; et al. A high-efficiency Mo2C electrocatalyst promoting the polysulfide redox kinetics for Na-S batteries. Adv. Mater. 2022, 34, 2200479.
45. Jiang, Y.; Yu, Z.; Zhou, X.; et al. Single-atom vanadium catalyst boosting reaction kinetics of polysulfides in Na-S batteries. Adv. Mater. 2023, 35, 2208873.
46. Zhao, Z.; Yi, Z.; Li, H.; et al. Synergetic effect of spatially separated dual co-catalyst for accelerating multiple conversion reaction in advanced lithium sulfur batteries. Nano. Energy. 2021, 81, 105621.
47. Wang, Y.; Wang, Y.; Xu, C.; et al. Phosphor-doped carbon network electrocatalyst enables accelerated redox kinetics of polysulfides for sodium-sulfur batteries. ACS. Nano. 2024, 18, 3839-49.
48. Jayan, R.; Islam, M. M. Mechanistic insights into interactions of polysulfides at VS2 interfaces in Na-S batteries: a DFT study. ACS. Appl. Mater. Interfaces. 2021, 13, 35848-55.
49. Fang, D.; Ghosh, T.; Huang, S.; et al. Core-shell tandem catalysis coupled with interface engineering for high-performance room-temperature Na-S batteries. Small 2023, 19, 2302461.
50. Yu, X.; Wang, N.; Sun, Z.; Shao, L.; Shi, X.; Cai, J. Separator modified by a caterpillar-like composite with interconnected N-doped carbon nanotubes decorated Co-MnO heterointerface enabling robust polysulfide adsorption and catalytic conversion for Li-S batteries. Electrochim. Acta. 2023, 457, 142497.
51. Li, T.; Liang, L.; Chen, Z.; Zhu, J.; Shen, P. Hollow Ti3C2T MXene@CoSe2/N-doped carbon heterostructured composites for multiphase electrocatalysis process in lithium-sulfur batteries. Chem. Eng. J. 2023, 474, 145970.