REFERENCES

1. NREL. Champion photovoltaic module efficiency chart. Available from: https://www.nrel.gov/pv/module-efficiency.html [Last accessed on 5 Jun 2024].

2. Bhattacharya S, John S. Beyond 30% conversion efficiency in silicon solar cells: a numerical demonstration. Sci Rep 2019;9:12482.

3. Čulík P, Brooks K, Momblona C, et al. Design and cost analysis of 100 MW perovskite solar panel manufacturing process in different locations. ACS Energy Lett 2022;7:3039-44.

4. NREL. Best research-cell efficiency chart. Available from: https://www.nrel.gov/pv/cell-efficiency.html [Last accessed on 5 Jun 2024].

5. Rivkin B, Fassl P, Sun Q, Taylor AD, Chen Z, Vaynzof Y. Effect of ion migration-induced electrode degradation on the operational stability of perovskite solar cells. ACS Omega 2018;3:10042-7.

6. Penukula S, Estrada Torrejon R, Rolston N. Quantifying and reducing ion migration in metal halide perovskites through control of mobile ions. Molecules 2023;28:5026.

7. Bi E, Song Z, Li C, Wu Z, Yan Y. Mitigating ion migration in perovskite solar cells. Trends Chem 2021;3:575-88.

8. Tayagaki T, Yamamoto K, Murakami TN, Yoshita M. Temperature-dependent ion migration and mobile-ion-induced degradation of perovskite solar cells under illumination. Solar Energy Mater Solar Cells 2023;257:112387.

9. Wu Z, Yuan S, Miao S, et al. Unraveling the rapid ion migration in perovskite solar cells by circuit-switched transient photoelectric technique. J Chem Phys 2024;160:111101.

10. Zai H, Ma Y, Chen Q, Zhou H. Ion migration in halide perovskite solar cells: mechanism, characterization, impact and suppression. J Energy Chem 2021;63:528-49.

11. Zhao Y, Zhou W, Han Z, Yu D, Zhao Q. Effects of ion migration and improvement strategies for the operational stability of perovskite solar cells. Phys Chem Chem Phys 2021;23:94-106.

12. Liu J, Hu M, Dai Z, Que W, Padture NP, Zhou Y. Correlations between electrochemical ion migration and anomalous device behaviors in perovskite solar cells. ACS Energy Lett 2021;6:1003-14.

13. Hossain MI, Tong Y, Shetty A, Mansour S. Probing the degradation pathways in perovskite solar cells. Solar Energy 2023;265:112128.

14. Mathew P, Cho J, Kamat PV. Ramifications of ion migration in 2D lead halide perovskites. ACS Energy Lett 2024;9:1103-14.

15. Huang Z, Proppe AH, Tan H, et al. Suppressed ion migration in reduced-dimensional perovskites improves operating stability. ACS Energy Lett 2019;4:1521-7.

16. Grancini G, Nazeeruddin MK. Dimensional tailoring of hybrid perovskites for photovoltaics. Nat Rev Mater 2019;4:4-22.

17. Zhao X, Liu T, Loo YL. Advancing 2D perovskites for efficient and stable solar cells: challenges and opportunities. Adv Mater 2022;34:e2105849.

18. Ortiz-Cervantes C, Carmona-Monroy P, Solis-Ibarra D. Two-dimensional halide perovskites in solar cells: 2D or not 2D? ChemSusChem 2019;12:1560-75.

19. Ma K, Sun J, Atapattu HR, et al. Holistic energy landscape management in 2D/3D heterojunction via molecular engineering for efficient perovskite solar cells. Sci Adv 2023;9:eadg0032.

20. Zouhair S, Clegg C, Valitova I, March S, Jailani JM, Pecunia V. Carbon electrodes for perovskite photovoltaics: interfacial properties, meta-analysis, and prospects. Solar RRL 2024;8:2300929.

21. Besleaga C, Abramiuc LE, Stancu V, et al. Iodine migration and degradation of perovskite solar cells enhanced by metallic electrodes. J Phys Chem Lett 2016;7:5168-75.

22. Domanski K, Correa-Baena JP, Mine N, et al. Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 2016;10:6306-14.

23. Parashar M, Sharma M, Saini DK, et al. Probing elemental diffusion and radiation tolerance of perovskite solar cells via non-destructive Rutherford backscattering spectrometry. APL Energy 2024;2:016109.

24. Kerner RA, Cohen AV, Xu Z, et al. Electrochemical doping of halide perovskites by noble metal interstitial cations. Adv Mater 2023;35:e2302206.

25. Sun X, Lin T, Ding C, et al. Fabrication of opaque aluminum electrode-based perovskite solar cells enabled by the interface optimization. Org Electron 2022;104:106475.

26. Svanström S, García-Fernández A, Jacobsson TJ, et al. The complex degradation mechanism of copper electrodes on lead halide perovskites. ACS Mater Au 2022;2:301-12.

27. Chen H, Yang S. Stabilizing and scaling up carbon-based perovskite solar cells. J Mater Res 2017;32:3011-20.

28. Hadadian M, Smått J, Correa-baena J. The role of carbon-based materials in enhancing the stability of perovskite solar cells. Energy Environ Sci 2020;13:1377-407.

29. Baghestani E, Tajabadi F, Saki Z, et al. A conductive adhesive ink for carbon-laminated perovskite solar cells with enhanced stability and high efficiency. Solar Energy 2023;266:112165.

30. Zhu A, Chen L, Zhang A, et al. Playdough-like carbon electrode: a promising strategy for high efficiency perovskite solar cells and modules. eScience 2024;4:100221.

31. Jeon I, Seo S, Sato Y, et al. Perovskite solar cells using carbon nanotubes both as cathode and as anode. J Phys Chem C 2017;121:25743-9.

32. Zhang J, Hu XG, Ji K, et al. High-performance bifacial perovskite solar cells enabled by single-walled carbon nanotubes. Nat Commun 2024;15:2245.

33. Zhang C, Wang S, Zhang H, et al. Efficient stable graphene-based perovskite solar cells with high flexibility in device assembling via modular architecture design. Energy Environ Sci 2019;12:3585-94.

34. Gan Y, Sun J, Guo P, et al. Advances in the research of carbon electrodes for perovskite solar cells. Dalton Trans 2023;52:16558-77.

35. Pandey S, Karakoti M, Bhardwaj D, et al. Recent advances in carbon-based materials for high-performance perovskite solar cells: gaps, challenges and fulfillment. Nanoscale Adv 2023;5:1492-526.

36. Fagiolari L, Bella F. Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells. Energy Environ Sci 2019;12:3437-72.

37. Yu Y, Hoang MT, Yang Y, Wang H. Critical assessment of carbon pastes for carbon electrode-based perovskite solar cells. Carbon 2023;205:270-93.

38. Nguyen H, Penukula S, Mahaffey M, Rolston N. All inorganic CsPbI3 perovskite solar cells with reduced mobile ion concentration and film stress. MRS Commun 2024;14:208-14.

39. Xu J, Boyd CC, Yu ZJ, et al. Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems. Science 2020;367:1097-104.

40. Vijayaraghavan SN, Wall J, Xiang W, et al. Carbon electrode with sputtered Au coating for efficient and stable perovskite solar cells. ACS Appl Mater Interfaces 2023;15:15290-7.

41. Zhang H, Xiao J, Shi J, et al. Self-adhesive macroporous carbon electrodes for efficient and stable perovskite solar cells. Adv Funct Mater 2018;28:1802985.

42. Li M, Johnson S, Gil-escrig L, et al. Strategies to improve the mechanical robustness of metal halide perovskite solar cells. Energy Adv 2024;3:273-80.

43. Han B, Yuan S, Cai B, et al. Green perovskite light-emitting diodes with 200 hours stability and 16% efficiency: cross-linking strategy and mechanism. Adv Funct Mater 2021;31:2011003.

44. Morales-aragonés JI, Alonso-garcía MDC, Gallardo-saavedra S, et al. Online distributed measurement of dark I-V curves in photovoltaic plants. Appl Sci 2021;11:1924.

45. Liu R, Hu X, Xu M, Ren H, Yu H. Layered low-dimensional ruddlesden-popper and dion-jacobson perovskites: from material properties to photovoltaic device performance. ChemSusChem 2023;16:e202300736.

46. Ahmad S, Fu P, Yu S, et al. Dion-jacobson phase 2D layered perovskites for solar cells with ultrahigh stability. Joule 2019;3:794-806.

47. Chen K, Xiao X, Liu J, et al. Record-efficiency printable hole-conductor-free mesoscopic perovskite solar cells enabled by the multifunctional schiff base derivative. Adv Mater 2024;36:2401319.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/