REFERENCES

1. Ashokkumar, V.; Venkatkarthick, R.; Jayashree, S.; et al. Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts - a critical review. Bioresour. Technol. 2022, 344, 126195.

2. Pompei, S.; Grimm, C.; Schiller, C.; Schober, L.; Kroutil, W. Thiols act as methyl traps in the biocatalytic demethylation of guaiacol derivatives. Angew. Chem. Int. Ed. 2021, 60, 16906-10.

3. Smet G, Bai X, Maes BUW. Selective C(aryl)-O bond cleavage in biorenewable phenolics. Chem. Soc. Rev. 2024, 53, 5489-551.

4. Zhao, Y.; Zhan, J.; Hu, R.; et al. Water-assisted catalytic transfer hydrogenation of guaiacol to cyclohexanol over Ru/NiAl2O4. Chem. Eng. J. 2024, 485, 149934.

5. Wang, B.; Huang, J.; Wu, H.; Yan, X.; Liao, Y.; Li, H. Synergy of heterogeneous Co/Ni dual atoms enabling selective C-O bond scission of lignin coupling with in-situ N-functionalization. J. Energy. Chem. 2024, 92, 16-25.

6. Smet G, Bai X, Mensch C, Sergeyev S, Evano G, Maes BUW. Selective nickel-catalyzed hydrodeacetoxylation of aryl acetates. Angew. Chem. Int. Ed. 2022, 61, e202201751.

7. Wu, R.; Meng, Q.; Yan, J.; et al. Intermetallic synergy in platinum-cobalt electrocatalysts for selective C-O bond cleavage. Nat. Catal. 2024, 7, 702-18.

8. Lang, M.; Li, H. Toward value-added arenes from lignin-derived phenolic compounds via catalytic hydrodeoxygenation. ACS. Sustainable. Chem. Eng. 2022, 10, 13208-43.

9. Zhang, J.; Sun, J.; Wang, Y. Recent advances in the selective catalytic hydrodeoxygenation of lignin-derived oxygenates to arenes. Green. Chem. 2020, 22, 1072-98.

10. Lang, M.; Li, H. Heterogeneous metal-based catalysts for cyclohexane synthesis from hydrodeoxygenation of lignin-derived phenolics. Fuel 2023, 344, 128084.

11. Wong, S. S.; Shu, R.; Zhang, J.; Liu, H.; Yan, N. Downstream processing of lignin derived feedstock into end products. Chem. Soc. Rev. 2020, 49, 5510-60.

12. Winterton, N. The green solvent: a critical perspective. Clean. Technol. Environ. Policy. 2021, 23, 2499-522.

13. Marco-Contelles, J.; Molina, M. T.; Anjum, S. Naturally occurring cyclohexane epoxides: sources, biological activities, and synthesis. Chem. Rev. 2004, 104, 2857-900.

14. Liu, L.; Liu, L.; Zhang, K.; et al. Selective conversion of cyclohexene to 2-methoxycyclohexanol over molybdenum oxide on beta zeolite. Ind. Eng. Chem. Res. 2023, 62, 16207-14.

15. Feng, J.; Shang, Y.; Zhang, Y. Research on synthesis and thermodynamic properties of 2-methoxycyclohexanol. J. Therm. Anal. Calorim. 2018, 131, 2197-203.

16. Jiang, Y.; Huang, J.; Hunger, M.; Maciejewski, M.; Baiker, A. Comparative studies on the catalytic activity and structure of a Cu-MOF and its precursor for alcoholysis of cyclohexene oxide. Catal. Sci. Technol. 2015, 5, 897-902.

17. Obeso, J. L.; Gabriel, F. J.; Flores, C. V.; et al. Lewis acid-catalyzed ring-opening alcoholysis of cyclohexene oxide: the role of open metal sites in the Bi(III)‐based metal-organic framework SU-101. ChemCatChem 2023, 15, e202300471.

18. Abbasi, K. R.; Shahbaz, M.; Zhang, J.; Irfan, M.; Alvarado, R. Analyze the environmental sustainability factors of China: the role of fossil fuel energy and renewable energy. Renew. Energy. 2022, 187, 390-402.

19. Zhou, H.; Wang, H.; Sadow, A. D.; Slowing, I. I. Toward hydrogen economy: Selective guaiacol hydrogenolysis under ambient hydrogen pressure. Appl. Catal. B. Environ. 2020, 270, 118890.

20. Nakagawa, Y.; Ishikawa, M.; Tamura, M.; Tomishige, K. Selective production of cyclohexanol and methanol from guaiacol over Ru catalyst combined with MgO. Green. Chem. 2014, 16, 2197-203.

21. Hensley, A. J.; Bray, J.; Shangguan, J.; Chin, Y. H.; Mcewen, J. S. Catalytic consequences of hydrogen addition events and solvent-adsorbate interactions during guaiacol-H2 reactions at the H2O-Ru(0001) interface. J. Catal. 2021, 395, 467-82.

22. Wang, B.; Zhou, P.; Yan, X.; Li, H.; Wu, H.; Zhang, Z. Cooperative catalysis of Co single atoms and nanoparticles enables selective CAr-OCH3 cleavage for sustainable production of lignin-based cyclohexanols. J. Energy. Chem. 2023, 79, 535-49.

23. Nania, C.; Bertini, M.; Gueci, L.; Ferrante, F.; Duca, D. DFT insights into competing mechanisms of guaiacol hydrodeoxygenation on a platinum cluster. Phys. Chem. Chem. Phys. 2023, 25, 10460-71.

24. Zhang, K.; Meng, Q.; Wu, H.; et al. Selective hydrodeoxygenation of aromatics to cyclohexanols over ru single atoms supported on CeO2. J. Am. Chem. Soc. 2022, 144, 20834-46.

25. Wang, X.; Zhu, S.; Wang, S.; Wang, J.; Fan, W.; Lv, Y. Ni nanoparticles entrapped in nickel phyllosilicate for selective hydrogenation of guaiacol to 2-methoxycyclohexanol. Appl. Catal. A. Gen. 2018, 568, 231-41.

26. Yamaguchi, A.; Murakami, Y.; Yamazaki, K.; Shirai, M.; Hiyoshi, N. Stereoselective hydrogenation of guaiacol to cis-2-methoxycyclohexanol using supported rhodium catalysts in supercritical carbon dioxide. Catal. Today. 2024, 425, 114356.

27. Kumar, A.; Kumar, J.; Bhaskar, T. High surface area biochar from sargassum tenerrimum as potential catalyst support for selective phenol hydrogenation. Environ. Res. 2020, 186, 109533.

28. Chen, J.; Ji, J.; Tu, T. Selective hydrogenation of phenols to cyclohexanols catalyzed by robust solid NHC-Rh coordination assemblies in water. Green. Chem. 2023, 25, 7541-6.

29. Qian, W.; Lin, L.; Qiao, Y.; et al. Ru subnanoparticles on N-doped carbon layer coated SBA-15 as efficient Catalysts for arene hydrogenation. Appl. Catal. A. Gen. 2019, 585, 117183.

30. Wang, Q.; De, B. M. C. M.; Safonova, O. V.; et al. Tunable catalysis by reversible switching between Ru(III) single sites and Ru0 clusters in solid micelles. J. Catal. 2023, 426, 336-44.

31. Wang, A.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65-81.

32. Li, L.; Chang, X.; Lin, X.; Zhao, Z. J.; Gong, J. Theoretical insights into single-atom catalysts. Chem. Soc. Rev. 2020, 49, 8156-78.

33. Gong, X.; Song, P.; Han, C.; Xiao, Y.; Mei, X.; Xu, W. Heterogeneous single-atom catalysts for energy process: recent progress, applications and challenges. Energy. Mater. 2023. DOI: 10.20517/energymater.2022.82.

34. Wang, W.; Li, S.; Qiang, Q.; et al. Catalytic refining lignin-derived monomers: seesaw effect between nanoparticle and single-atom Pt. Angew. Chem. Int. Ed. 2024, 63, e202404683.

35. Zhang, L.; Shang, N.; Gao, S.; et al. Atomically dispersed Co catalyst for efficient hydrodeoxygenation of lignin-derived species and hydrogenation of nitroaromatics. ACS. Catal. 2020, 10, 8672-82.

36. Li, J.; Ge, J.; Zhao, Y.; et al. Lignin-tailored fabrication of Ni single atom catalyst with Ni-N3 active site for efficient and selective catalytic transfer hydrogenation of lignin-derived aldehydes. Chem. Eng. J. 2024, 496, 154315.

37. Guo, H.; Zhao, J.; Chen, Y.; et al. Mechanistic insights into hydrodeoxygenation of lignin derivatives over Ni single atoms supported on Mo2C. ACS. Catal. 2024, 14, 703-17.

38. Gao, X.; Ma, R.; Liu, Z.; Wang, S.; Wu, Y.; Song, G. Hydrodeoxygenation of lignin-derived phenols into cycloalkanes by atomically dispersed Pt-polyoxometalate catalysts. Appl. Catal. B. Environ. Energy. 2024, 352, 124059.

39. Jiang, F.; Wang, S.; Liu, B.; et al. Insights into the influence of CeO2 crystal facet on CO2 hydrogenation to methanol over Pd/CeO2 catalysts. ACS. Catal. 2020, 10, 11493-509.

40. Li, H.; Zha, S.; Zhao, Z.; et al. The nature of loading-dependent reaction barriers over mixed RuO2/TiO2 catalysts. ACS. Catal. 2018, 8, 5526-32.

41. Huang, H.; Dai, Q.; Wang, X. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene. Appl. Catal. B. Environ. 2014, 158-159, 96-105.

42. Campbell, C. T.; Peden, C. H. Oxygen vacancies and catalysis on ceria surfaces. Science 2005, 309, 713-4.

43. Vayssilov, G. N.; Lykhach, Y.; Migani, A.; et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat. Mater. 2011, 10, 310-5.

44. Liu, P.; Zheng, C.; Liu, W.; Wu, X.; Liu, S. Oxidative redispersion-derived single-site Ru/CeO2 catalysts with mobile Ru complexes trapped by surface hydroxyls instead of oxygen vacancies. ACS. Catal. 2024, 14, 6028-44.

45. Zhao, Z.; Bababrik, R.; Xue, W.; et al. Solvent-mediated charge separation drives alternative hydrogenation path of furanics in liquid water. Nat. Catal. 2019, 2, 431-6.

46. Arora, S. S.; Bhan, A. Kinetics of aromatics hydrogenation on HBEA. J. Catal. 2020, 383, 24-32.

47. Jiang, W.; Cao, J.; He, Z.; et al. Highly selective hydrogenation of arenes over Rh nanoparticles immobilized on α-Al2O3 support at room temperature. Chem. Eng. Sci. 2023, 270, 118544.

48. Zhang, Q.; Li, H.; Gao, P.; Wang, L. PVP-NiB amorphous catalyst for selective hydrogenation of phenol and its derivatives. Chin. J. Catal. 2014, 35, 1793-9.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/