REFERENCES

1. Xia, Q.; Zhai, Y.; Zhao, L.; et al. Carbon-supported single-atom catalysts for advanced rechargeable metal-air batteries. Energy. Mater. 2022, 2, 200015:.

2. Worku, A.; Ayele, D.; Habtu, N. Recent advances and future perspectives in engineering of bifunctional electrocatalysts for rechargeable zinc-air batteries. Mater. Today. Adv. 2021, 9, 100116.

3. Ryu, J.; Park, J.; Park, J.; Kim, M. G.; Park, M. Molecular engineering of atomically dispersed Fe-N4 and Cu-N4 dual-sites in carbon nitride nanotubes for rechargeable zinc-air batteries. Energy. Storage. Mater. 2023, 55, 397-405.

4. Liu, C.; Cui, Y.; Zhou, Y. The recent progress of single-atom catalysts on amorphous substrates for electrocatalysis. Energy. Mater. 2024, 4, 500001.

5. Ji, S.; Wang, Y.; Liu, H.; et al. Regulating the electronic synergy of asymmetric atomic Fe sites with adjacent defects for boosting activity and durability toward oxygen reduction. Adv. Funct. Mater. 2024, 34, 2314621.

6. Qiu, G.; Wang, J.; Qiao, H.; et al. Construction of Fe/Co-N4 single-atom sites for the oxygen reduction reaction in zinc-air batteries. Inorg. Chem. 2024, 63, 17955-66.

7. Lv, M.; Cui, C. X.; Huang, N.; et al. Precisely engineering asymmetric atomic CoN4 by electron donating and extracting for oxygen reduction reaction. Angew. Chem. Int. Ed. 2024, 63, e202315802.

8. Deng, W.; Wu, T.; Wu, Y.; et al. Microcosmic modulation of the Co-N bonding structure improves the multi-functional electrocatalytic performance. J. Mater. Chem. A. 2024, 12, 10349-58.

9. Cui, T.; Wang, Y. P.; Ye, T.; et al. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem. Int. Ed. 2022, 61, e202115219.

10. Tong, M.; Sun, F.; Xing, G.; Tian, C.; Wang, L.; Fu, H. Potential dominates structural recombination of single atom Mn sites for promoting oxygen reduction reaction. Angew. Chem. Int. Ed. 2023, 62, e202314933.

11. Chen, K.; Liu, K.; An, P.; et al. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat. Commun. 2020, 11, 4173.

12. Chen, Z.; Niu, H.; Ding, J.; et al. Unraveling the origin of sulfur-doped Fe-N-C single-atom catalyst for enhanced oxygen reduction activity: effect of iron spin-state tuning. Angew. Chem. Int. Ed. 2021, 60, 25404-10.

13. Ramaswamy, N.; Tylus, U.; Jia, Q.; Mukerjee, S. Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: linking surface science to coordination chemistry. J. Am. Chem. Soc. 2013, 135, 15443-9.

14. Yasin, G.; Ali, S.; Ibraheem, S.; et al. Simultaneously engineering the synergistic-effects and coordination-environment of dual-single-atomic iron/cobalt-sites as a bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. ACS. Catal. 2023, 13, 2313-25.

15. Li, M.; Zhu, H.; Yuan, Q.; et al. Proximity electronic effect of Ni/Co diatomic sites for synergistic promotion of electrocatalytic oxygen reduction and hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2210867.

16. Wang, Y.; Wu, J.; Tang, S.; et al. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem. Int. Ed. 2023, 62, e202219191.

17. Wu, S.; Jiang, S.; Liu, S.; et al. Single Cu-N4 sites enable atomic Fe clusters with high-performance oxygen reduction reactions. Energy. Environ. Sci. 2023, 16, 3576-86.

18. Chen, Y.; He, T.; Liu, Q.; et al. Highly durable iron single-atom catalysts for low-temperature zinc-air batteries by electronic regulation of adjacent iron nanoclusters. Appl. Catal. B. Environ. 2023, 323, 122163.

19. Zhang, J.; Wang, Q.; Qiu, C.; et al. Boosting activity of Fe-N4 sites in single-Fe-atom catalysts via S in the second coordination sphere for direct methanol fuel cells. Cell. Rep. Phys. Sci. 2023, 4, 101330.

20. Zhao, Y.; Shen, Z.; Huo, J.; et al. Epoxy-rich Fe single atom sites boost oxygen reduction electrocatalysis. Angew. Chem. Int. Ed. 2023, 62, e202308349.

21. Gong, X.; Song, P.; Han, C.; Xiao, Y.; Mei, X.; Xu, W. Heterogeneous single-atom catalysts for energy process: recent progress, applications and challenges. Energy. Mater. 2023, 3, 300016.

22. Li, Z.; Zhong, X.; Gao, L.; et al. Asymmetric coordination of bimetallic Fe-Co single-atom pairs toward enhanced bifunctional activity for rechargeable zinc-air batteries. ACS. Nano. 2024, 18, 13006-18.

23. Yang, Y.; Li, B.; Liang, Y.; et al. Hetero-diatomic CoN4-NiN4 site pairs with long-range coupling as efficient bifunctional catalyst for rechargeable Zn-air batteries. Adv. Sci. 2024, 11, e2310231.

24. Li, X.; Qin, J.; Lin, Q.; et al. Electron spin broken-symmetry of Fe-Co diatomic pairs to promote kinetics of bifunctional oxygen electrocatalysis for zinc-air batteries. Adv. Sci. 2024, 11, e2401187.

25. Rao, P.; Deng, Y.; Fan, W.; et al. Movable type printing method to synthesize high-entropy single-atom catalysts. Nat. Commun. 2022, 13, 5071.

26. Shang, H.; Zhou, X.; Dong, J.; et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

27. Guan, G.; Liu, Y.; Li, F.; et al. Atomic cobalt metal centers with asymmetric N/B-coordination for promoting oxygen reduction reaction. Adv. Funct. Mater. 2024, 34, 2408111.

28. Zhou, Y.; Liu, Y.; Wang, Z.; et al. Fe-Co dual atomic doublets on N, P codoped carbon as active sites in the framework of heterostructured hollow fibers towards high-performance flexible Zn-air battery. Energy. Storage. Mater. 2023, 59, 102772.

29. Sheng, J.; Sun, S.; Jia, G.; Zhu, S.; Li, Y. Doping effect on mesoporous carbon-supported single-site bifunctional catalyst for zinc-air batteries. ACS. Nano. 2022, 16, 15994-6002.

30. Zhou, Y.; Lu, R.; Tao, X.; et al. Boosting oxygen electrocatalytic activity of Fe-N-C catalysts by phosphorus incorporation. J. Am. Chem. Soc. 2023, 145, 3647-55.

31. Wang, Z.; Jin, X.; Xu, R.; et al. Cooperation between dual metal atoms and nanoclusters enhances activity and stability for oxygen reduction and evolution. ACS. Nano. 2023, 17, 8622-33.

32. Wan, X.; Liu, Q.; Liu, J.; et al. Iron atom-cluster interactions increase activity and improve durability in Fe-N-C fuel cells. Nat. Commun. 2022, 13, 2963.

33. Ao, X.; Zhang, W.; Li, Z.; et al. Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters. ACS. Nano. 2019, 13, 11853-62.

34. Yang, H. G.; Sun, C. H.; Qiao, S. Z.; et al. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638-41.

35. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.

36. Schimka, L.; Harl, J.; Stroppa, A.; et al. Accurate surface and adsorption energies from many-body perturbation theory. Nat. Mater. 2010, 9, 741-4.

37. Chadi, D. J. Special points for brillouin-zone integrations. Phys. Rev. B. 1976, 13, 5188.

38. Tan, Y.; Wang, Y.; Li, A.; Zhang, Y.; Zhang, Y.; Cheng, C. Double synergetic FeCo-nanoparticles and single atoms embedded in N-doped carbon nanotube arrays as efficient bifunctional catalyst for high-performance zinc-air batteries. Mater. Today. Energy. 2022, 29, 101138.

39. Wang, Z.; Lu, Z.; Ye, Q.; et al. Construction of Fe nanoclusters/nanoparticles to engineer FeN4 sites on multichannel porous carbon fibers for boosting oxygen reduction reaction. Adv. Funct. Mater. 2024, 34, 2315150.

40. Liu, S.; Li, Z.; Wang, C.; et al. Turning main-group element magnesium into a highly active electrocatalyst for oxygen reduction reaction. Nat. Commun. 2020, 11, 938.

41. Wang, P.; Zhang, R.; Wang, K.; et al. Simultaneously constructing asymmetrically coordinated cobalt single atoms and cobalt nanoclusters via a fresh potassium hydroxide clipping strategy toward efficient alkaline oxygen Rreduction reaction. Energy. Mater. Adv. 2023, 4, 0042.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/