REFERENCES
1. Welsby, D.; Price, J.; Pye, S.; Ekins, P. Unextractable fossil fuels in a 1.5 °C world. Nature 2021, 597, 230-4.
2. Zhang, H.; Nai, J.; Yu, L.; Lou, X. W. Metal-organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 2017, 1, 77-107.
3. Glenk, G.; Reichelstein, S. Economics of converting renewable power to hydrogen. Nat. Energy. 2019, 4, 216-22.
4. Kazemi, A.; Manteghi, F.; Tehrani, Z. Metal Electrocatalysts for hydrogen production in water splitting. ACS. Omega. 2024, 9, 7310-35.
5. Staffell, I.; Scamman, D.; Velazquez, A. A.; et al. The role of hydrogen and fuel cells in the global energy system. Energy. Environ. Sci. 2019, 12, 463-91.
6. Gunathilake, C.; Soliman, I.; Panthi, D.; et al. A comprehensive review on hydrogen production, storage, and applications. Chem. Soc. Rev. 2024, 53, 10900-69.
7. Pickering, B.; Lombardi, F.; Pfenninger, S. Diversity of options to eliminate fossil fuels and reach carbon neutrality across the entire European energy system. Joule 2022, 6, 1253-76.
8. Parkinson, B.; Balcombe, P.; Speirs, J. F.; Hawkes, A. D.; Hellgardt, K. Levelized cost of CO2 mitigation from hydrogen production routes. Energy. Environ. Sci. 2019, 12, 19-40.
9. Wu, W.; Zhai, H.; Holubnyak, E. Technological evolution of large-scale blue hydrogen production toward the U.S. hydrogen energy earthshot. Nat. Commun. 2024, 15, 5684.
10. Li, W.; Feaster, J. T.; Akhade, S. A.; et al. Comparative techno-economic and life cycle analysis of water oxidation and hydrogen oxidation at the anode in a CO2 electrolysis to ethylene system. ACS. Sustainable. Chem. Eng. 2021, 9, 14678-89.
11. Lu, F.; Zhang, Y.; Liu, S.; et al. Surface proton transfer promotes four-electron oxygen reduction on gold nanocrystal surfaces in alkaline solution. J. Am. Chem. Soc. 2017, 139, 7310-7.
12. Zegeye, T. A.; Chen, W.; Hsu, C.; Valinton, J. A. A.; Chen, C. Activation energy assessing potential-dependent activities and site reconstruction for oxygen evolution. ACS. Energy. Lett. 2022, 7, 2236-43.
13. Arshad, F.; Haq, T. U.; Hussain, I.; Sher, F. Recent advances in electrocatalysts toward alcohol-assisted, energy-saving hydrogen production. ACS. Appl. Energy. Mater. 2021, 4, 8685-701.
14. Guo, W.; Zhang, K.; Liang, Z.; Zou, R.; Xu, Q. Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design. Chem. Soc. Rev. 2019, 48, 5658-716.
15. Wang, H.; Sun, M.; Ren, J.; Yuan, Z. Circumventing challenges: design of anodic electrocatalysts for hybrid water electrolysis systems. Adv. Energy. Mater. 2023, 13, 2203568.
16. Lu, Y.; Chen, M.; Wang, Y.; Yang, C.; Zou, Y.; Wang, S. Aqueous electrocatalytic small-molecule valorization trilogy. Chem 2024, 10, 1371-90.
17. Boggs, B. K.; King, R. L.; Botte, G. G. Urea electrolysis: direct hydrogen production from urine. Chem. Commun. 2009, 4859-61.
18. Fukumoto, Y.; Matsunaga, T.; Hayashi, T. Electrocatalytic activities of metal electrodes in anodic oxidation of hydrazine in alkaline solution. Electrochim. Acta. 1981, 26, 631-6.
19. Yao, K.; Cheng, Y. Investigation of the electrocatalytic activity of nickel for ammonia oxidation. Mater. Chem. Phys. 2008, 108, 247-50.
20. Lyu, F.; Wang, Q.; Choi, S. M.; Yin, Y. Noble-metal-free electrocatalysts for oxygen evolution. Small 2019, 15, 1804201.
21. Zhang, H.; Gu, H.; Shi, G.; et al. Two-dimensional covalent framework derived nonprecious transition metal single-atomic-site electrocatalyst toward high-efficiency oxygen reduction. Nano. Lett. 2023, 23, 3803-9.
22. Jiang, K.; Li, J.; Zheng, Z.; et al. Bimetallic phosphide NiCoP electrocatalyst synthesized by one-step electrodeposition for efficient hydrogen evolution in acidic and alkaline solution. ACS. Appl. Energy. Mater. 2024, 7, 7895-905.
23. Park, G. D.; Park, J.; Kim, J. K.; Kang, Y. C. Recent advances in heterostructured anode materials with multiple anions for advanced alkali-ion batteries. Adv. Energy. Mater. 2021, 11, 2003058.
24. Ahmad, M. U.; Suresh, G.; Bang, J. H. Rescrutinizing the iron effect on oxygen evolution reaction catalysts under industrially relevant working conditions: overlooked mass transfer limitation driven by the iron incorporation. ACS. Energy. Lett. 2024, 9, 4953-8.
25. Du, R.; Zhang, N.; Zhu, J.; et al. Nitrogen-doped carbon nanotube aerogels for high-performance ORR catalysts. Small 2015, 11, 3903-8.
26. Singh, B.; Gawande, M. B.; Kute, A. D.; et al. Single-atom (iron-based) catalysts: synthesis and applications. Chem. Rev. 2021, 121, 13620-97.
27. Masa, J.; Xia, W.; Muhler, M.; Schuhmann, W. On the role of metals in nitrogen-doped carbon electrocatalysts for oxygen reduction. Angew. Chem. Int. Ed. 2015, 54, 10102-20.
28. Gerber, I. C.; Serp, P. A theory/experience description of support effects in carbon-supported catalysts. Chem. Rev. 2020, 120, 1250-349.
29. Etesami, M.; Nguyen, M. T.; Yonezawa, T.; Tuantranont, A.; Somwangthanaroj, A.; Kheawhom, S. 3D carbon nanotubes-graphene hybrids for energy conversion and storage applications. Chem. Eng. J. 2022, 446, 137190.
30. Shah, S. S. A.; Najam, T.; Bashir, M. S.; et al. Identification of catalytic active sites for durable proton exchange membrane fuel cell: catalytic degradation and poisoning perspectives. Small 2022, 18, 2106279.
31. Barman, B. K.; Sarkar, B.; Ghosh, P.; Ghosh, M.; Mohan, R. G.; Nanda, K. K. In situ decoration of ultrafine Ru nanocrystals on n-doped graphene tube and their applications as oxygen reduction and hydrogen evolution catalyst. ACS. Appl. Energy. Mater. 2019, 2, 7330-9.
32. Choi, J.; Seo, S.; Kim, M.; Han, Y.; Shao, X.; Lee, H. Relationship between Structure and performance of atomic-scale electrocatalysts for water splitting. Small 2024, 20, 2304560.
33. Lang, R.; Du, X.; Huang, Y.; et al. Single-atom catalysts based on the metal-oxide interaction. Chem. Rev. 2020, 120, 11986-2043.
34. Chen, J.; Zhang, Y.; Zhang, Z.; et al. Metal-support interactions for heterogeneous catalysis: mechanisms, characterization techniques and applications. J. Mater. Chem. A. 2023, 11, 8540-72.
35. Li, R.; Luo, L.; Ma, X.; Wu, W.; Wang, M.; Zeng, J. Single atoms supported on metal oxides for energy catalysis. J. Mater. Chem. A. 2022, 10, 5717-42.
36. De, S.; Burange, A. S.; Luque, R. Conversion of biomass-derived feedstocks into value-added chemicals over single-atom catalysts. Green. Chem. 2022, 24, 2267-86.
37. Che, W.; Tao, T.; Baek, J. Strategies for boosting the activity of single-atom catalysts for future energy applications. J. Mater. Chem. A. 2022, 10, 10297-325.
38. He, T.; Puente-santiago, A. R.; Xia, S.; Ahsan, M. A.; Xu, G.; Luque, R. Experimental and theoretical advances on single atom and atomic cluster-decorated low-dimensional platforms towards superior electrocatalysts. Adv. Energy. Mater. 2022, 12, 2200493.
39. Zhao, X.; Levell, Z. H.; Yu, S.; Liu, Y. Atomistic understanding of two-dimensional electrocatalysts from first principles. Chem. Rev. 2022, 122, 10675-709.
40. Liu, J.; Wen, H.; Zhang, Z.; Wang, P. An amorphous/nanocrystalline NixP/Ni heterojunction for electrooxidation of hydrazine. J. Mater. Chem. A. 2023, 11, 14213-20.
41. Zhang, Y.; Lv, Q.; Chi, K.; et al. Hierarchical porous carbon heterojunction flake arrays derived from metal organic frameworks and ionic liquid for H2O2 electrochemical detection in cancer tissue. Nano. Res. 2021, 14, 1335-43.
42. Gawande, M. B.; Goswami, A.; Asefa, T.; et al. Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev. 2015, 44, 7540-90.
43. Pandikassala, A.; Gangadharan, P. K.; Veedu, R. N.; Kurungot, S. Polydopamine-derived iron-doped hollow carbon nanorods as an efficient bifunctional electrocatalyst for simultaneous generation of hydrogen and electricity. Energy. Fuels. 2022, 36, 11245-60.
44. Ahsan, M. A.; He, T.; Noveron, J. C.; Reuter, K.; Puente-Santiago, A. R.; Luque, R. Low-dimensional heterostructures for advanced electrocatalysis: an experimental and computational perspective. Chem. Soc. Rev. 2022, 51, 812-28.
45. Wang, Z.; Fei, H.; Wu, Y. N. Unveiling advancements: trends and hotspots of metal-organic frameworks in photocatalytic CO2 reduction. ChemSusChem 2024, 17, e202400504.
46. Gong, Q.; Yang, D.; Yang, H.; et al. Cobalt ditelluride meets tellurium vacancy: an efficient catalyst as a multifunctional polysulfide mediator toward robust lithium-sulfur batteries. ACS. Nano. 2024, 18, 28382-93.
47. Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z.; Tang, J. Visible-light driven heterojunction photocatalysts for water splitting - a critical review. Energy. Environ. Sci. 2015, 8, 731-59.
48. Liu, W.; Xie, J.; Guo, Y.; Lou, S.; Gao, L.; Tang, B. Sulfurization-induced edge amorphization in copper-nickel-cobalt layered double hydroxide nanosheets promoting hydrazine electro-oxidation. J. Mater. Chem. A. 2019, 7, 24437-44.
49. Huang, C.; Xia, Z.; Wang, J.; et al. Highly efficient and stable electrocatalyst for hydrogen evolution by molybdenum doped Ni-Co phosphide nanoneedles at high current density. Nano. Res. 2024, 17, 1066-74.
50. Ge, W.; Lin, L.; Wang, S.; et al. Electrocatalytic urea oxidation: advances in mechanistic insights, nanocatalyst design, and applications. J. Mater. Chem. A. 2023, 11, 15100-21.
51. Gao, X.; Zhang, S.; Wang, P.; Jaroniec, M.; Zheng, Y.; Qiao, S. Z. Urea catalytic oxidation for energy and environmental applications. Chem. Soc. Rev. 2024, 53, 1552-91.
52. Guo, L.; Zhang, X.; Gan, L.; et al. Advances in selective electrochemical oxidation of 5-hydroxymethylfurfural to produce high-value chemicals. Adv. Sci. 2023, 10, 2205540.
53. Alzaabi, A.; Almarzooqi, F.; Choi, D. Ammonia electro-catalysis for hydrogen production: Mechanisms, materials, and scalability. Int. J. Hydrogen. Energy. 2024, 94, 23-52.
54. Liu, H.; Liu, Y.; Li, M.; Liu, X.; Luo, J. Transition-metal-based electrocatalysts for hydrazine-assisted hydrogen production. Mater. Today. Adv. 2020, 7, 100083.
55. Zheng, X.; Yang, J.; Li, P.; et al. Dual-atom support boosts nickel-catalyzed urea electrooxidation. Angew. Chem. Int. Ed. 2023, 62, e202217449.
56. Rao, N. N.; Alex, C.; Mukherjee, M.; et al. Evidence for exclusive direct mechanism of urea electro-oxidation driven by in situ- generated resilient active species on a rare-earth nickelate. ACS. Catal. 2024, 14, 981-93.
57. Peng, X.; Zeng, L.; Wang, D.; et al. Electrochemical C-N coupling of CO2 and nitrogenous small molecules for the electrosynthesis of organonitrogen compounds. Chem. Soc. Rev. 2023, 52, 2193-237.
58. Wang, T.; Tao, L.; Zhu, X.; et al. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 2022, 5, 66-73.
59. Rollinson, A. N.; Jones, J.; Dupont, V.; Twigg, M. V. Urea as a hydrogen carrier: a perspective on its potential for safe, sustainable and long-term energy supply. Energy. Environ. Sci. 2011, 4, 1216-24.
60. Rollinson, A. N.; Rickett, G. L.; Lea-langton, A.; Dupont, V.; Twigg, M. V. Hydrogen from urea-water and ammonia-water solutions. Appl. Catal. B. Environ. 2011, 106, 304-15.
61. Liu, D.; Liu, T.; Zhang, L.; et al. High-performance urea electrolysis towards less energy-intensive electrochemical hydrogen production using a bifunctional catalyst electrode. J. Mater. Chem. A. 2017, 5, 3208-13.
62. Ding, H.; Zhao, Z.; Zeng, H.; et al. Heterojunction-induced local charge redistribution boosting energy-saving hydrogen production via urea electrolysis. ACS. Mater. Lett. 2024, 6, 1029-41.
63. Gao, X.; Bai, X.; Wang, P.; et al. Boosting urea electrooxidation on oxyanion-engineered nickel sites via inhibited water oxidation. Nat. Commun. 2023, 14, 5842.
64. Ji, Z.; Song, Y.; Zhao, S.; Li, Y.; Liu, J.; Hu, W. Pathway manipulation via Ni, Co, and V ternary synergism to realize high efficiency for urea electrocatalytic oxidation. ACS. Catal. 2022, 12, 569-79.
65. Wang, Z.; Guo, P.; Liu, M.; et al. Rational design of metallic NiTex (x = 1 or 2) as bifunctional electrocatalysts for efficient urea conversion. ACS. Appl. Energy. Mater. 2019, 2, 3363-72.
66. Zhou, M.; Weng, Q.; Popov, Z. I.; et al. Construction of polarized carbon-nickel catalytic surfaces for potent, durable, and economic hydrogen evolution reactions. ACS. Nano. 2018, 12, 4148-55.
67. Fu, X.; Pu, B.; Pan, L.; et al. Composition regulation of Ni-BDC MOF architecture to enhance electrocatalytic urea oxidation in alkaline solution. Mater. Chem. Front. 2024, 8, 3272-9.
68. Feng, C.; Wang, F.; Liu, Z.; et al. A self-healing catalyst for electrocatalytic and photoelectrochemical oxygen evolution in highly alkaline conditions. Nat. Commun. 2021, 12, 5980.
69. Naduvil, K. M. S.; Alex, C.; Rao, N. N.; et al. Unfolding the significance of regenerative active species in nickel hydroxide-based systems for sustained urea electro-oxidation. Chem. Mater. 2024, 36, 5343-55.
70. Jin, L.; Ji, R.; Wan, H.; et al. Boosting the electrocatalytic urea oxidation performance by amorphous-crystalline Ni-TPA@NiSe heterostructures and mechanism discovery. ACS. Catal. 2023, 13, 837-47.
71. Zhu, D.; Zhang, H.; Miao, J.; et al. Strategies for designing more efficient electrocatalysts towards the urea oxidation reaction. J. Mater. Chem. A. 2022, 10, 3296-313.
72. Song, J.; Qian, Z.; Yang, J.; Lin, X.; Xu, Q.; Li, J. In situ/operando investigation for heterogeneous electro-catalysts: from model catalysts to state-of-the-art catalysts. ACS. Energy. Lett. 2024, 9, 4414-40.
73. Vedharathinam, V.; Botte, G. G. Direct evidence of the mechanism for the electro-oxidation of urea on Ni(OH)2 catalyst in alkaline medium. Electrochim. Acta. 2013, 108, 660-5.
74. Zhu, X.; Dou, X.; Dai, J.; et al. Metallic nickel hydroxide nanosheets give superior electrocatalytic oxidation of urea for fuel cells. Angew. Chem. Int. Ed. 2016, 55, 12465-9.
75. Zhao, J.; Zhang, Y.; Guo, H.; et al. Defect-rich Ni(OH)2/NiO regulated by WO3 as core-shell nanoarrays achieving energy-saving water-to-hydrogen conversion via urea electrolysis. Chem. Eng. J. 2022, 433, 134497.
76. Huang, C. J.; Xu, H. M.; Shuai, T. Y.; Zhan, Q. N.; Zhang, Z. J.; Li, G. R. Modulation strategies for the preparation of high-performance catalysts for urea oxidation reaction and their applications. Small 2023, 19, 2301130.
77. Schranck, A.; Marks, R.; Yates, E.; Doudrick, K. Effect of urine compounds on the electrochemical oxidation of urea using a nickel cobaltite catalyst: an electroanalytical and spectroscopic investigation. Environ. Sci. Technol. 2018, 52, 8638-48.
78. Modak, A.; Mohan, R.; Rajavelu, K.; Cahan, R.; Bendikov, T.; Schechter, A. Metal-organic polymer-derived interconnected Fe-Ni alloy by carbon nanotubes as an advanced design of urea oxidation catalysts. ACS. Appl. Mater. Interfaces. 2021, 13, 8461-73.
79. Vedharathinam, V.; Botte, G. G. Experimental investigation of potential oscillations during the electrocatalytic oxidation of urea on Ni catalyst in alkaline medium. J. Phys. Chem. C. 2014, 118, 21806-12.
80. Wang, G.; Ling, Y.; Lu, X.; et al. A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation. Nanoscale 2013, 5, 4129-33.
81. Liu, G.; Huang, C.; Yang, Z.; Su, J.; Zhang, W. Ultrathin NiMn-LDH nanosheet structured electrocatalyst for enhanced electrocatalytic urea oxidation. Appl. Catal. A. Gen. 2021, 614, 118049.
82. Tian, T.; Gao, H.; Zhou, X.; et al. Study of the active sites in porous nickel oxide nanosheets by manganese modulation for enhanced oxygen evolution catalysis. ACS. Energy. Lett. 2018, 3, 2150-8.
83. Rao, R. R.; Corby, S.; Bucci, A.; et al. Spectroelectrochemical analysis of the water oxidation mechanism on doped nickel oxides. J. Am. Chem. Soc. 2022, 144, 7622-33.
84. Chia, X.; Pumera, M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 2018, 1, 909-21.
85. Feng, D.; Lei, T.; Lukatskaya, M. R.; et al. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy. 2018, 3, 30-6.
86. Pu, Y.; Lawrence, M. J.; Celorrio, V.; et al. Nickel confined in 2D earth-abundant oxide layers for highly efficient and durable oxygen evolution catalysts. J. Mater. Chem. A. 2020, 8, 13340-50.
87. He, X.; Yin, F.; Li, Y.; et al. NiMnO3/NiMn2O4 oxides synthesized via the aid of pollen: ilmenite/spinel hybrid nanoparticles for highly efficient bifunctional oxygen electrocatalysis. ACS. Appl. Mater. Interfaces. 2016, 8, 26740-57.
88. Liu, Z.; Zhang, N.; Xiong, Y. In situ raman characterizations for enhanced understandings on electrocatalysis. J. Phys. Chem. C. 2024, 128, 13651-65.
89. Yang, X.; Zhang, H.; Xu, W.; Yu, B.; Liu, Y.; Wu, Z. A doping element improving the properties of catalysis: in situ Raman spectroscopy insights into Mn-doped NiMn layered double hydroxide for the urea oxidation reaction. Catal. Sci. Technol. 2022, 12, 4471-85.
90. Andaveh, R.; Sabour, R. A.; Seif, A.; et al. In situ assembly of a superaerophobic CoMn/CuNiP heterostructure as a trifunctional electrocatalyst for ampere-level current density urea-assisted hydrogen production. ACS. Appl. Mater. Interfaces. 2024, 16, 8717-32.
91. Chen, Z.; Wei, W.; Shon, H. K.; Ni, B. Designing bifunctional catalysts for urea electrolysis: progress and perspectives. Green. Chem. 2024, 26, 631-54.
92. Yan, X.; Hu, Q.; Wang, G.; et al. NiCo layered double hydroxide/hydroxide nanosheet heterostructures for highly efficient electro-oxidation of urea. Int. J. Hydrogen. Energy. 2020, 45, 19206-13.
93. Miao, F.; Cui, P.; Gu, T.; Yu, S.; Yan, Z.; Hai, G. Dual cation-modified hierarchical nickel hydroxide nanosheet arrays as efficient and robust electrocatalysts for the urea oxidation reaction. Dalton. Trans. 2024, 53, 1599-606.
94. Periyasamy, S.; Subramanian, P.; Levi, E.; Aurbach, D.; Gedanken, A.; Schechter, A. Exceptionally active and stable spinel nickel manganese oxide electrocatalysts for urea oxidation reaction. ACS. Appl. Mater. Interfaces. 2016, 8, 12176-85.
95. Sharma, S.; Kadyan, P.; Sharma, R. K.; Kumar, N.; Grover, S. Progressive updates on nickel hydroxide and its nanocomposite for electrochemical electrode material in asymmetric supercapacitor device. J. Energy. Storage. 2024, 87, 111368.
96. Ge, J.; Kuang, J.; Xiao, Y.; Guan, M.; Yang, C. Recent development of nickel-based catalysts and in situ characterization techniques for mechanism understanding of the urea oxidation reaction. Surf. Interfaces. 2023, 41, 103230.
97. Yang, K.; Hao, L.; Hou, Y.; Zhang, J.; Yang, J. Summary and application of Ni-based catalysts for electrocatalytic urea oxidation. Int. J. Hydrogen. Energy. 2024, 51, 966-81.
98. Jeon, S. S.; Lim, J.; Kang, P. W.; Lee, J. W.; Kang, G.; Lee, H. Design principles of NiFe-layered double hydroxide anode catalysts for anion exchange membrane water electrolyzers. ACS. Appl. Mater. Interfaces. 2021, 13, 37179-86.
99. Jiang, L.; Pan, Y.; Zhang, J.; et al. Mo propellant boosting the activity of Ni-P for efficient urea-assisted water electrolysis of hydrogen evolution. J. Colloid. Interface. Sci. 2022, 622, 192-201.
100. Liu, H.; Zhu, S.; Cui, Z.; Li, Z.; Wu, S.; Liang, Y. Ni2P nanoflakes for the high-performing urea oxidation reaction: linking active sites to a UOR mechanism. Nanoscale 2021, 13, 1759-69.
101. Yun, W. H.; Das, G.; Kim, B.; Park, B. J.; Yoon, H. H.; Yoon, Y. S. Ni-Fe phosphide deposited carbon felt as free-standing bifunctional catalyst electrode for urea electrolysis. Sci. Rep. 2021, 11, 22003.
102. Vij, V.; Sultan, S.; Harzandi, A. M.; et al. Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS. Catal. 2017, 7, 7196-225.
103. Zeng, L.; Liu, Z.; Sun, K.; et al. Multiple modulations of pyrite nickel sulfides via metal heteroatom doping engineering for boosting alkaline and neutral hydrogen evolution. J. Mater. Chem. A. 2019, 7, 25628-40.
104. Guo, X.; Qiu, L.; Li, M.; et al. Accelerating the generation of NiOOH by in-situ surface phosphating nickel sulfide for promoting the proton-coupled electron transfer kinetics of urea electrolysis. Chem. Eng. J. 2024, 483, 149264.
105. Chang, F.; Gao, W.; Guo, J.; Chen, P. Emerging materials and methods toward ammonia-based energy storage and conversion. Adv. Mater. 2021, 33, 2005721.
106. Chen, L.; Shi, J. Chemical-assisted hydrogen electrocatalytic evolution reaction (CAHER). J. Mater. Chem. A. 2018, 6, 13538-48.
107. Fang, J. Y.; Zheng, Q. Z.; Lou, Y. Y.; et al. Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nat. Commun. 2022, 13, 7899.
108. Herron, J. A.; Ferrin, P.; Mavrikakis, M. Electrocatalytic oxidation of ammonia on transition-metal surfaces: a first-principles study. J. Phys. Chem. C. 2015, 119, 14692-701.
109. Hassan, N. S.; Jalil, A. A.; Saravanan, R.; et al. Recent progress on electrocatalysts in ammonia electrooxidation reaction for clean hydrogen production. J. Mater. Chem. A. 2024, 12, 23202-17.
110. Pillai, H. S.; Li, Y.; Wang, S. H.; et al. Interpretable design of Ir-free trimetallic electrocatalysts for ammonia oxidation with graph neural networks. Nat. Commun. 2023, 14, 792.
111. Zhu, M.; Yang, Y.; Xi, S.; et al. Deciphering NH3 adsorption kinetics in ternary Ni-Cu-Fe oxyhydroxide toward efficient ammonia oxidation reaction. Small 2021, 17, 2005616.
112. Samanta, R.; Shekhawat, A.; Sahu, P.; Barman, S. Review and perspective of nickel and its derived catalysts for different electrochemical synthesis reactions in alkaline media for hydrogen production. Energy. Fuels. 2024, 38, 73-104.
113. Wang, Y.; Ling, Y.; Wang, B.; et al. A review of progress in proton ceramic electrochemical cells: material and structural design, coupled with value-added chemical production. Energy. Environ. Sci. 2023, 16, 5721-70.
114. Katsounaros, I.; Figueiredo, M. C.; Calle-vallejo, F.; et al. On the mechanism of the electrochemical conversion of ammonia to dinitrogen on Pt(100) in alkaline environment. J. Catal. 2018, 359, 82-91.
115. Burshtein, T. Y.; Yasman, Y.; Muñoz-moene, L.; Zagal, J. H.; Eisenberg, D. Hydrazine oxidation electrocatalysis. ACS. Catal. 2024, 14, 2264-83.
116. Tong, Y.; Chen, P. Recent progress of advanced electrocatalysts for hydrogen production via hydrazine-assisted water electrolysis. Inorg. Chem. Front. 2024, 11, 6218-45.
117. Matsumoto, M.; Kano, H.; Suzuki, M.; Katagiri, T.; Umeda, Y.; Fukushima, S. Carcinogenicity and chronic toxicity of hydrazine monohydrate in rats and mice by two-year drinking water treatment. Regul. Toxicol. Pharmacol. 2016, 76, 63-73.
118. Zhu, W.; Gandi, N. A.; Wu, Q.; et al. Simultaneous electrocatalytic hydrogen production and hydrazine removal from acidic waste water. Chem. Eng. Sci. 2022, 258, 117769.
119. Attia, A. A.; Silaghi-Dumitrescu, R. Computational investigation of the initial two-electron, two-proton steps in the reaction mechanism of hydroxylamine oxidoreductase. J. Phys. Chem. B. 2014, 118, 12140-5.
120. Zhou, H.; Xiong, B.; Chen, L.; Shi, J. Modulation strategies of Cu-based electrocatalysts for efficient nitrogen reduction. J. Mater. Chem. A. 2020, 8, 20286-93.
121. Wang, Z.; Xu, L.; Huang, F.; et al. Copper-nickel nitride nanosheets as efficient bifunctional catalysts for hydrazine-assisted electrolytic hydrogen production. Adv. Energy. Mater. 2019, 9, 1900390.
122. Wen, H.; Chen, C.; Tang, P.; Wang, P. Ultrasmall nickel boride nanoparticles supported on reduced graphene oxide as a high-performance catalyst for hydrazine electrooxidation. Electrochim. Acta. 2023, 471, 143364.
123. Sakamoto, T.; Masuda, T.; Yoshimoto, K.; et al. NiO/Nb2O5/C hydrazine electrooxidation catalysts for anion exchange membrane fuel cells. J. Electrochem. Soc. 2017, 164, F229-34.
124. Uddin, M. E.; Kim, N. H.; Kuila, T.; Lee, S. H.; Hui, D.; Lee, J. H. Preparation of reduced graphene oxide-NiFe2O4 nanocomposites for the electrocatalytic oxidation of hydrazine. Compos. Part. B. Eng. 2015, 79, 649-59.
125. Askari, M. B.; Salarizadeh, P.; Beitollahi, H.; Tajik, S.; Eshghi, A.; Azizi, S. Electro-oxidation of hydrazine on NiFe2O4-rGO as a high-performance nano-electrocatalyst in alkaline media. Mater. Chem. Phys. 2022, 275, 125313.
126. Yang, X.; Bu, H.; Qi, R.; et al. Boosting urea-assisted water splitting over P-MoO2@CoNiP through Mo leaching/reabsorption coupling CoNiP reconstruction. J. Colloid. Interface. Sci. 2024, 676, 445-58.
127. Chen, X. H.; Fu, H. C.; Wu, L. L.; et al. Tuning the d-band center of NiC2O4 with Nb2O5 to optimize the Volmer step for hydrazine oxidation-assisted hydrogen production. Green. Chem. 2022, 24, 5559-69.
128. Rathore, D.; Banerjee, A.; Pande, S. Bifunctional tungsten-Doped Ni(OH)2/NiOOH nanosheets for overall water splitting in an alkaline medium. ACS. Appl. Nano. Mater. 2022, 5, 2664-77.
129. Ren, J.; Chen, L.; Wang, H.; Tian, W.; Yuan, Z. Water electrolysis for hydrogen production: from hybrid systems to self-powered/catalyzed devices. Energy. Environ. Sci. 2024, 17, 49-113.
130. Fan, G.; Li, F.; Evans, D. G.; Duan, X. Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem. Soc. Rev. 2014, 43, 7040-66.
131. Babar, P.; Lokhande, A.; Karade, V.; et al. Trifunctional layered electrodeposited nickel iron hydroxide electrocatalyst with enhanced performance towards the oxidation of water, urea and hydrazine. J. Colloid. Interface. Sci. 2019, 557, 10-7.
132. Parra-puerto, A.; Ng, K. L.; Fahy, K.; Goode, A. E.; Ryan, M. P.; Kucernak, A. Supported transition metal phosphides: activity survey for HER, ORR, OER, and corrosion resistance in acid and alkaline electrolytes. ACS. Catal. 2019, 9, 11515-29.
133. Blanchard, P. E. R.; Grosvenor, A. P.; Cavell, R. G.; Mar, A. X-ray photoelectron and absorption spectroscopy of metal-rich phosphides M2P and M3P (M = Cr-Ni). Chem. Mater. 2008, 20, 7081-8.
134. Zhu, Y.; Lu, P.; Li, F.; Ding, Y.; Chen, Y. Metal-rich porous copper cobalt phosphide nanoplates as a high-rate and stable battery-type cathode material for battery-supercapacitor hybrid devices. ACS. Appl. Energy. Mater. 2021, 4, 3962-74.
135. Zhu, L.; Huang, J.; Meng, G.; et al. Active site recovery and N-N bond breakage during hydrazine oxidation boosting the electrochemical hydrogen production. Nat. Commun. 2023, 14, 1997.
136. Li, S. H.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Nanostructured metal phosphides: from controllable synthesis to sustainable catalysis. Chem. Soc. Rev. 2021, 50, 7539-86.
137. Li, C.; Wang, Y.; Wang, X.; Azam, T.; Wu, Z. Electrochemical refining of energy-saving coupled systems toward generation of high-value chemicals. Chem 2024, 10, 2666-99.
138. Behera, S.; Ganguly, S.; Loha, C.; Mondal, B.; Ghosh, S. Critical role of interface design in acceleration of overall water splitting and hybrid electrolysis process: state of the art and perspectives. Energy. Fuels. 2023, 37, 7603-33.
139. Zhai, P.; Zhang, Y.; Wu, Y.; et al. Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting. Nat. Commun. 2020, 11, 5462.
140. Yang, C.; Wang, T.; Li, C.; Li, Y.; Liu, D.; Zhang, Q. Recent progress on 2D material-based nanoarchitectures for small molecule electro-oxidation. Mater. Chem. Front. 2024, 8, 404-33.
141. Zhou, L.; Shao, M.; Zhang, C.; et al. Hierarchical CoNi-sulfide nanosheet arrays derived from layered double hydroxides toward efficient hydrazine electrooxidation. Adv. Mater. 2017, 29.
142. Moges, E. A.; Chang, C.; Tsai, M.; Su, W.; Hwang, B. J. Electrocatalysts for value-added electrolysis coupled with hydrogen evolution. EES. Catal. 2023, 1, 413-33.
143. Wu, Y.; Liu, X.; Han, D.; et al. Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nat. Commun. 2018, 9, 1425.
144. Liu, Y.; Zhang, J.; Li, Y.; Qian, Q.; Li, Z.; Zhang, G. Realizing the synergy of interface engineering and chemical substitution for Ni3N enables its bifunctionality toward hydrazine oxidation assisted energy-saving hydrogen production. Adv. Funct. Mater. 2021, 31, 2103673.
145. Li, K.; Zhou, G.; Tong, Y.; Ye, Y.; Chen, P. Interface engineering of a hierarchical p-modified Co/Ni3P heterostructure for highly efficient water electrolysis coupled with hydrazine degradation. ACS. Sustainable. Chem. Eng. 2023, 11, 14186-96.
146. Wang, X.; Hu, H.; Yan, X.; Zhang, Z.; Yang, M. Activating interfacial electron redistribution in lattice-matched biphasic Ni3N-Co3N for energy-efficient electrocatalytic hydrogen production via coupled hydrazine degradation. Angew. Chem. Int. Ed. 2024, 63, e202401364.
147. Dou, J.; Sun, Z.; Opalade, A. A.; Wang, N.; Fu, W.; Tao, F. F. Operando chemistry of catalyst surfaces during catalysis. Chem. Soc. Rev. 2017, 46, 2001-27.
148. Xu, Q.; Zhang, J.; Zhang, H.; et al. Atomic heterointerface engineering overcomes the activity limitation of electrocatalysts and promises highly-efficient alkaline water splitting. Energy. Environ. Sci. 2021, 14, 5228-59.
149. Su, J.; Zhang, S.; Liu, Q.; Hu, G.; Zhang, L. The janus in monodispersed catalysts: synergetic interactions. J. Mater. Chem. A. 2021, 9, 5276-95.
150. Chen, Y.; Ji, S.; Chen, C.; Peng, Q.; Wang, D.; Li, Y. Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2018, 2, 1242-64.
151. Wang, Y.; Su, H.; He, Y.; et al. Advanced electrocatalysts with single-metal-atom active sites. Chem. Rev. 2020, 120, 12217-314.
152. Huang, C.; Dong, J.; Sun, W.; et al. Coordination mode engineering in stacked-nanosheet metal-organic frameworks to enhance catalytic reactivity and structural robustness. Nat. Commun. 2019, 10, 2779.
153. Zhou, S.; Zhao, Y.; Shi, R.; et al. Vacancy-rich MXene-immobilized Ni single atoms as a high-performance electrocatalyst for the hydrazine oxidation reaction. Adv. Mater. 2022, 34, 2204388.
154. Liu, Y.; Zhang, J.; Li, Y.; et al. Manipulating dehydrogenation kinetics through dual-doping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production. Nat. Commun. 2020, 11, 1853.
155. Khalafallah, D.; Zhi, M.; Hong, Z. Development trends on nickel-based electrocatalysts for direct hydrazine fuel cells. ChemCatChem 2021, 13, 81-110.
156. Senthil, R. A.; Jung, S.; Min, A.; et al. Revealing the impact of pulsed laser-produced single-Pd nanoparticles on a bimetallic NiCo2O4 electrocatalyst for energy-saving hydrogen production via hybrid water electrolysis. ACS. Catal. 2024, 14, 3320-35.
157. Shih, Y.; Wu, Z.; Luo, J. Electrochemical ammonia oxidation on terephthalic acid framework (BDC-NH2) derived core-shell nickel oxide/nickel-enriched 2D carbon nanoflakes (NiO/Ni/CNF). Appl. Catal. B. Environ. Energy. 2024, 357, 124244.
158. Liao, W.; Zhao, Q.; Wang, S.; et al. Insights into mechanisms on electrochemical oxygen evolution substitution reactions. J. Catal. 2023, 428, 115161.
159. Zhai, Y.; Jin, C.; Xia, Q.; et al. Atomically confined Ru sites in octahedral Co3O4 for high-efficiency hydrazine oxidation. Adv. Funct. Mater. 2024, 34, 2311063.
160. Liu, G.; Nie, T.; Wang, H.; et al. Size sensitivity of supported palladium species on layered double hydroxides for the electro-oxidation dehydrogenation of hydrazine: from nanoparticles to nanoclusters and single atoms. ACS. Catal. 2022, 12, 10711-7.
161. Xu, X.; Chen, H. C.; Li, L.; et al. Leveraging metal nodes in metal-organic frameworks for advanced anodic hydrazine oxidation assisted seawater splitting. ACS. Nano. 2023, 17, 10906-17.
162. Hu, Y.; Chao, T.; Li, Y.; et al. Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem. Int. Ed. 2023, 62, e202308800.
163. De, S.; Zhang, J.; Luque, R.; Yan, N. Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy. Environ. Sci. 2016, 9, 3314-47.
164. Nakaya, Y.; Furukawa, S. Catalysis of alloys: classification, principles, and design for a variety of materials and reactions. Chem. Rev. 2023, 123, 5859-947.
165. Nørskov, J. K.; Bligaard, T.; Hvolbaek, B.; Abild-Pedersen, F.; Chorkendorff, I.; Christensen, C. H. The nature of the active site in heterogeneous metal catalysis. Chem. Soc. Rev. 2008, 37, 2163-71.
166. Sun, F.; Qin, J.; Wang, Z.; et al. Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nat. Commun. 2021, 12, 4182.
167. Feng, G.; Kuang, Y.; Li, P.; et al. Single crystalline ultrathin nickel-cobalt alloy nanosheets array for direct hydrazine fuel cells. Adv. Sci. 2017, 4, 1600179.
168. Sun, Q.; Wang, L.; Shen, Y.; et al. Bifunctional copper-doped nickel catalysts enable energy-efficient hydrogen production via hydrazine oxidation and hydrogen evolution reduction. ACS. Sustainable. Chem. Eng. 2018, 6, 12746-54.
169. Zhang, Z.; Tang, P.; Wen, H.; Wang, P. Bicontinuous nanoporous Ni-Fe alloy as a highly active catalyst for hydrazine electrooxidation. J. Alloys. Compd. 2022, 906, 164370.
170. Prajapati, A.; Govindarajan, N.; Sun, W.; et al. Mechanistic insights into the electrochemical oxidation of 5-hydroxymethylfurfural on a thin-film Ni anode. ACS. Catal. 2024, 14, 10122-31.
171. Li, Z.; Han, Y.; Huang, B.; Xie, Z.; Wei, Q. Electrochemical oxidation of 5-hydroxymethylfurfural over a molybdenum sulfide modified nickel-based catalyst. Mater. Adv. 2023, 4, 2449-56.
172. Gupta, D.; Kafle, A.; Nagaiah, T. C. Dinitrogen reduction coupled with methanol oxidation for low overpotential electrochemical NH3 synthesis over cobalt pyrophosphate as bifunctional catalyst. Small 2023, 19, 2208272.
173. Simões, M.; Baranton, S.; Coutanceau, C. Electrochemical valorisation of glycerol. ChemSusChem 2012, 5, 2106-24.
174. Tuleushova, N.; Holade, Y.; Cornu, D.; Tingry, S. Glycerol electro-reforming in alkaline electrolysis cells for the simultaneous production of value-added chemicals and pure hydrogen - mini-review. Electrochem. Sci. Adv. 2023, 3, e2100174.
175. Xia, Z.; Ma, C.; Fan, Y.; et al. Vacancy optimized coordination on nickel oxide for selective electrocatalytic oxidation of glycerol. ACS. Catal. 2024, 14, 1930-8.
176. Chen, W.; Xie, C.; Wang, Y.; et al. Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation. Chem 2020, 6, 2974-93.
177. Huang, W.; Ma, X. Y.; Wang, H.; et al. Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution. Adv. Mater. 2017, 29.
178. Trafela, Š.; Zavašnik, J.; Šturm, S.; Žužek, R. K. Controllable voltammetric formation of a structurally disordered NiOOH/Ni(OH)2 redox pair on Ni-nanowire electrodes for enhanced electrocatalytic formaldehyde oxidation. Electrochim. Acta. 2020, 362, 137180.
179. Xu, L.; Yang, Y.; Li, C.; et al. Unveiling the mechanism of electrocatalytic oxidation of glycerol by in-situ electrochemical spectroscopy. Chem. Eng. J. 2024, 481, 148304.
180. Wang, S.; Yan, Y.; Du, Y.; et al. Inhibiting the deep reconstruction of Ni-based interface by coordination of chalcogen anions for efficient and stable glycerol electrooxidation. Adv. Funct. Mater. 2024, 34, 2404290.
181. Li, J.; Tian, X.; Wang, X.; et al. Electrochemical Conversion of alcohols into acidic commodities on nickel sulfide nanoparticles. Inorg. Chem. 2022, 61, 13433-41.
182. Jiang, R.; Tran, D. T.; Mcclure, J. P.; Chu, D. A class of (Pd-Ni-P) electrocatalysts for the ethanol oxidation reaction in alkaline media. ACS. Catal. 2014, 4, 2577-86.
183. Araujo, R. B.; Martín-yerga, D.; Santos, E. C. D.; Cornell, A.; Pettersson, L. G. Elucidating the role of Ni to enhance the methanol oxidation reaction on Pd electrocatalysts. Electrochim. Acta. 2020, 360, 136954.
184. Luo, H.; Yukuhiro, V. Y.; Fernández, P. S.; et al. Role of Ni in PtNi bimetallic electrocatalysts for hydrogen and value-added chemicals coproduction via glycerol electrooxidation. ACS. Catal. 2022, 12, 14492-506.