2. Ahmadabadi V, Shirvanimoghaddam K, Kerr R, Showkath N, Naebe M. Structure-rate performance relationship in Si nanoparticles-carbon nanofiber composite as flexible anode for lithium-ion batteries. Electrochim. Acta. 2020, 330, 135232.
3. Xu, C.; Fan, Z.; Zhang, M.; et al. A comparative study of the venting gas of lithium-ion batteries during thermal runaway triggered by various methods. Cell. Rep. Phys. Sci. 2023, 4, 101705.
4. Ke, B.; Cheng, S.; Zhang, C.; et al. Low-temperature flexible integration of all-solid-state thin-film lithium batteries enabled by spin-coating electrode architecture. Adv. Energy. Mater. 2024, 14, 2303757.
5. Gao, Z.; Zhou, Y.; Zhang, J.; et al. Advanced energy harvesters and energy storage for powering wearable and implantable medical devices. Adv. Mater. 2024, 36, e2404492.
6. Ye, T.; Wang, J.; Jiao, Y.; et al. A tissue-like soft all-hydrogel battery. Adv. Mater. 2022, 34, e2105120.
7. Lu, C.; Jiang, H.; Cheng, X.; et al. High-performance fibre battery with polymer gel electrolyte. Nature 2024, 629, 86-91.
8. Zhao, C.; Wang, R.; Liang, H.; et al. Autonomous self-healing strategy for flexible fiber lithium-ion battery with ultra-high mechanical properties and volumetric energy densities. Chem. Eng. J. 2024, 496, 154153.
9. Hassan, M. M.; Wang, X.; Bristi, A. A.; Yang, R.; Li, X.; Lu, Q. Composite scaffold of electrospun nano-porous cellulose acetate membrane casted with chitosan for flexible solid-state sodium-ion batteries. Nano. Energy. 2024, 128, 109971.
10. Wan, X.; Zhao, Y.; Li, Z.; Li, L. Emerging polymeric electrospun fibers: from structural diversity to application in flexible bioelectronics and tissue engineering. Exploration 2022, 2, 20210029.
11. Cheng, X.; Liu, Y. T.; Si, Y.; Yu, J.; Ding, B. Direct synthesis of highly stretchable ceramic nanofibrous aerogels via 3D reaction electrospinning. Nat. Commun. 2022, 13, 2637.
12. Liu, C.; Liao, Y.; Jiao, W.; et al. High toughness combined with high strength in oxide ceramic nanofibers. Adv. Mater. 2023, 35, e2304401.
13. Xie, G.; Tan, X.; Shi, Z.; et al. SiOx based anodes for advanced Li-ion batteries: recent progress and perspectives. Adv. Funct. Mater. 2025, 35, 2414714.
14. Huang, Q.; Wang, D.; Zheng, Z. Nanocarbon materials toward textile-based electrochemical energy storage devices. In: Nanocarbon Electrochemistry; 2020, pp.123-43.
15. Wu, W.; Liu, M.; Pei, Y.; et al. Unprecedented superhigh-rate and ultrastable anode for high-power battery via cationic disordering. Adv. Energy. Mater. 2022, 12, 2201130.
16. Huang, Q.; Liu, L.; Wang, D.; Liu, J.; Huang, Z.; Zheng, Z. One-step electrospinning of carbon nanowebs on metallic textiles for high-capacitance supercapacitor fabrics. J. Mater. Chem. A. 2016, 4, 6802-8.
17. Chang, J.; Huang, Q.; Gao, Y.; Zheng, Z. Pathways of developing high-energy-density flexible lithium batteries. Adv. Mater. 2021, 33, e2004419.
18. Zhang, T.; Ju, J.; Zhang, Z.; Su, D.; Wang, Y.; Kang, W. Wearable flexible zinc-ion batteries based on electrospinning technology. J. Energy. Chem. 2024, 98, 562-87.
19. Li, H.; Qu, R.; Ma, Z.; Zhou, N.; Huang, Q.; Zheng, Z. Permeable and patternable super-stretchable liquid metal fiber for constructing high-integration-density multifunctional electronic fibers. Adv. Funct. Mater. 2024, 34, 2308120.
20. Ding, Y.; Jiang, J.; Wu, Y.; et al. Porous conductive textiles for wearable electronics. Chem. Rev. 2024, 124, 1535-648.
21. He, F.; Wang, Y.; Liu, J.; Yao, X. One-dimensional carbon based nanoreactor fabrication by electrospinning for sustainable catalysis. Exploration 2023, 3, 20220164.
22. Khurram, T. M.; Ahmed, A.; Rafiq, M.; et al. Chemistry aspects and designing strategies of flexible materials for high-performance flexible lithium-ion batteries. Chem. Rec. 2024, 24, e202300155.
23. Li, H.; Tang, Z.; Liu, Z.; Zhi, C. Evaluating flexibility and wearability of flexible energy storage devices. Joule 2019, 3, 613-9.
24. Xiao, G.; Ju, J.; Li, M.; et al. Weavable yarn-shaped supercapacitor in sweat-activated self-charging power textile for wireless sweat biosensing. Biosens. Bioelectron. 2023, 235, 115389.
25. Shao, G.; Yu, R.; Zhang, X.; et al. Making stretchable hybrid supercapacitors by knitting non-stretchable metal fibers. Adv. Funct. Mater. 2020, 30, 2003153.
26. Ji, D.; Lin, Y.; Guo, X.; et al. Electrospinning of nanofibres. Nat. Rev. Methods. Primers. 2024, 4, 278.
27. Dinuwan, G. K. R. S.; Simorangkir, R. B. V. B.; McGuinness, G. B.; et al. The potential of electrospinning to enable the realization of energy-autonomous wearable sensing systems. ACS. Nano. 2024, 18, 2649-84.
28. Chen, L.; Mei, S.; Fu, K.; Zhou, J. Spinning the future: the convergence of nanofiber technologies and yarn fabrication. ACS. Nano. 2024, 18, 15358-86.
29. Huang, Y.; Li, Y.; Zhang, Y.; Yu, H.; Tan, Z. Near-field electrospinning for 2D and 3D structuring: fundamentals, methods, and applications. Mater. Today. Adv. 2024, 21, 100461.
30. Taylor, G. I.; Van, D. M. D. Electrically driven jets. Proc. R. Soc. Lond. A. 1969, 313, 453-75.
31. Si, Y.; Shi, S.; Hu, J. Electrospinning and electrospraying synergism: twins-tech collaboration across dimensions. Matter 2024, 7, 1373-405.
32. Zhang, Z.; Huang, X.; Hong, D.; Ye, P.; Chen, Z.; Xu, Q. Mechanism and experimental investigation on the formation of micro-triangle stepped jet in composite spinning solution. Polym. Eng. Sci. 2024, 64, 4309-20.
33. Fang, J.; Niu, H.; Wang, H.; Wang, X.; Lin, T. Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs. Energy. Environ. Sci. 2013, 6, 2196.
34. Yoo, J.; Kim, D. H.; Pyo, S. G.; Balasingam, S. K. Eletrospinning: improving the performance of 1-D nanofibers used in anodes, cathodes, and separators in lithium-ion batteries. Int. J. Energy. Res. 2024, 2024, 1847943.
35. Xue, M.; Quan, Z.; Qin, X.; Yu, J.; Li, Y. Impacts of viscosity on bending behavior of the electrospun jet: simulation model and experiment. Polymer 2024, 311, 127529.
36. Han, Y.; Shi, C.; Cui, F.; Chen, Q.; Tao, Y.; Li, Y. Solution properties and electrospinning of polyacrylamide and ε-polylysine complexes. Polymer 2020, 204, 122806.
37. Kheilbash, M.; Pirsalami, S.; Malayeri, M. R.; Zebarjad, S. M.; Riazi, M. Use of mixed low/high vapor pressure solvent as a novel solvent design strategy for tuning fiber diameter in electrospun mats. J. Polym. Res. 2024, 31, 3940.
38. Dong, T.; Arifeen, W. U.; Choi, J.; Yoo, K.; Ko, T. Surface-modified electrospun polyacrylonitrile nano-membrane for a lithium-ion battery separator based on phase separation mechanism. Chem. Eng. J. 2020, 398, 125646.
39. Asgari, S.; Mohammadi, Z. G.; Badiei, A.; Vasseghian, Y. Zr-UiO-66, ionic liquid (HMIM+TFSI-), and electrospun nanofibers (polyacrylonitrile): all in one as a piezo-photocatalyst for degradation of organic dye. Chem. Eng. J. 2024, 487, 150600.
40. Wang, X.; Zhu, S.; Dong, X.; Huang, H.; Qi, M. Ionic liquid assisted electrospinning synthesis for ultra-uniform Sn@ mesoporous carbon nanofibers as a flexible self-standing anode for lithium ion batteries. J. Alloys. Compd. 2021, 866, 158984.
41. Souza, R. J.; Soares, F. J. E.; Simões, T. A.; Oliveira, J. E.; Medeiros, E. S. Experimental investigation of solution blow spinning nozzle geometry and processing parameters on fiber morphology. ACS. Appl. Polym. Mater. 2024, 6, 9735-43.
42. Khan, J.; Khan, A.; Khan, M. Q.; Khan, H. Applications of co-axial electrospinning in the biomedical field. Next. Mater. 2024, 3, 100138.
43. Kim, B. G.; Kang, D. W.; Park, G.; Park, S. H.; Lee, S.; Choi, J. W. Electrospun Li-confinable hollow carbon fibers for highly stable Li-metal batteries. Chem. Eng. J. 2021, 422, 130017.
44. Hu, T.; Shen, X.; Peng, L.; et al. Preparation of single-ion conductor solid polymer electrolyte by multi-nozzle electrospinning process for lithium-ion batteries. J. Phys. Chem. Solids. 2021, 158, 110229.
45. Kılıç, A.; Yıldırım, B.; İçoğlu, H. İ.; Türkoğlu, M.; Topalbekiroğlu, M. Production of continuous nanofiber bundles by multi parallel electrodes in needleless electrospinning. Mater. Today. Commun. 2024, 39, 109025.
46. Jin, J.; Yeom, S. H.; Lee, H. J.; Choi, C. K.; Lee, S. H. The effect of nozzle spacing on the electric field and fiber size distribution in a multi-nozzle electrospinning system. J. Appl. Polym. Sci. 2023, 140, e53764.
47. Ding, L.; Li, R.; Gao, Y.; et al. Electrospun nanofibers for fragile artifact conservation. Compos. Commun. 2024, 46, 101824.
48. Yıldırım, B.; Kılıç, A.; İçoğlu, H. İ.; Türkoğlu, M.; Topalbekiroğlu, M. Continuous nanofiber bundle production using helical spinnerets with different configurations in needleless electrospinning. Adv. Eng. Mater. 2024, 26, 2400989.
49. Norzain, N. A.; Lin, W. C. Orientated and diameter-controlled fibrous scaffolds fabricated using the centrifugal electrospinning technique for stimulating the behaviours of fibroblast cells. J. Ind. Text. 2022, 51, 6728S-52S.
50. Sun, L.; Cai, Y.; Kim, D.; et al. Enhanced properties of solid polymer electrolytes by a bilayer nonwoven PET/nanofiber PVDF substrate for use in all-solid-state lithium metal batteries. J. Power. Sources. 2023, 564, 232851.
51. Zeng, Z.; Shao, Z.; Shen, R.; et al. Coaxial electrospun Tai chi-inspired lithium-ion battery separator with high performance and fireproofing capacity. ACS. Appl. Mater. Interfaces. 2023, 15, 44259-67.
52. Yu, Y.; Liu, M.; Chen, Z.; et al. Advances in nonwoven-based separators for lithium-ion batteries. Adv. Fiber. Mater. 2023, 5, 1827-51.
53. Zhang, S.; Li, Y.; Xu, G.; et al. High-capacity Li2Mn0.8Fe0.2SiO4/carbon composite nanofiber cathodes for lithium-ion batteries. J. Power. Sources. 2012, 213, 10-5.
54. Song, H. J.; Kim, J.; Choi, M.; et al. Li2MnSiO4 nanorods-embedded carbon nanofibers for lithium-ion battery electrodes. Electrochim. Acta. 2015, 180, 756-62.
55. Mados, E.; Atar, I.; Gratz, Y.; et al. Polymer-based LFP cathode/current collector microfiber-meshes with bi- and interlayered architectures for Li-ion battery. J. Power. Sources. 2024, 603, 234397.
56. Akhmetova, K.; Tatykayev, B.; Kalybekkyzy, S.; Sultanov, F.; Bakenov, Z.; Mentbayeva, A. One-step fabrication of all-in-one flexible nanofibrous lithium-ion battery. J. Energy. Storage. 2023, 65, 107237.
57. Zhijiang, C.; Xingjuan, S.; Yanan, F. Electrochemical properties of electrospun polyindole nanofibers as a polymer electrode for lithium ion secondary battery. J. Power. Sources. 2013, 227, 53-9.
58. Xiong, Y.; Li, Y.; Hu, Z.; et al. Nonsolvent-induced electrospun fibers with crater-like surface and high-loading polytriphenylamine-derived as a flexible cathode for lithium-ion batteries. Surf. Interfaces. 2024, 46, 104126.
59. Park, H.; Song, T.; Tripathi, R.; Nazar, L. F.; Paik, U. Li2MnSiO4/carbon nanofiber cathodes for Li-ion batteries. Ionics 2014, 20, 1351-9.
60. Zhang, C.; Liang, Y.; Yao, L.; Qiu, Y. Effect of thermal treatment on the properties of electrospun LiFePO4-carbon nanofiber composite cathode materials for lithium-ion batteries. J. Alloys. Compd. 2015, 627, 91-100.
61. Liu, J.; Hu, X.; Ran, F.; Wang, K.; Dai, J.; Zhu, X. Electrospinning-assisted construction of 3D LiFePO4@rGO/carbon nanofibers as flexible cathode to boost the rate capabilities of lithium-ion batteries. Ceram. Int. 2023, 49, 1401-8.
62. Kwon, O. H.; Oh, J. H.; Gu, B.; et al. Porous SnO2/C nanofiber anodes and LiFePO4/C nanofiber cathodes with a wrinkle structure for stretchable lithium polymer batteries with high electrochemical performance. Adv. Sci. 2020, 7, 2001358.
63. Hongtong, R.; Thanwisai, P.; Yensano, R.; Nash, J.; Srilomsak, S.; Meethong, N. Core-shell electrospun and doped LiFePO4/FeS/C composite fibers for Li-ion batteries. J. Alloys. Compd. 2019, 804, 339-47.
64. Chen, W.; Xu, D.; Chen, Y.; et al. In situ electrospinning synthesis of N-doped C nanofibers with uniform embedding of Mn doped MFe1-xMnxPO4 (M = Li, Na) as a high performance cathode for lithium/sodium-ion batteries. Adv. Mater. Inter. 2020, 7, 2000684.
65. Shin, J.; Yang, J.; Sergey, C.; Song, M. S.; Kang, Y. M. Carbon nanofibers heavy laden with Li3V2(PO4)3 particles featuring superb kinetics for high-power lithium ion battery. Adv. Sci. 2017, 4, 1700128.
66. Lokeswararao, Y.; Dakshinamurthy, A. C.; Budumuru, A. K.; Sudakar, C. Influence of nano-fibrous and nano-particulate morphology on the rate capability of Li3V2(PO4)3/C Li-ion battery cathode. Mater. Res. Bull. 2023, 166, 112331.
67. Gavali, D. S.; Abhijitha, V. G.; Nanda, B.; Thapa, R. Origin of high stability, enhanced specific capacity, and low Li diffusion energy in boron doped Li3V2(PO4)3. J. Energy. Storage. 2023, 69, 107899.
68. Zeng, W.; Xia, F.; Wang, J.; et al. Entropy-increased LiMn2O4-based positive electrodes for fast-charging lithium metal batteries. Nat. Commun. 2024, 15, 7371.
69. Duan, L.; Zhang, X.; Yue, K.; Wu, Y.; Zhuang, J.; Lü, W. Synthesis and electrochemical property of LiMn2O4 porous hollow nanofiber as cathode for lithium-ion batteries. Nanoscale. Res. Lett. 2017, 12, 109.
70. Xu, R.; Zhang, X.; Chamoun, R.; et al. Enhanced rate performance of LiNi0.5Mn1.5O4 fibers synthesized by electrospinning. Nano. Energy. 2015, 15, 616-24.
71. Kim, N.; Gi, M. K.; Chandio, Z. A.; Park, J.; Cheong, J. Y.; Jung, J. Breaking limits of Li-ion batteries with high-voltage spinel LiNi0.5Mn1.5O4 nanofiber/carbon nanotube composite cathodes. Korean. J. Chem. Eng. 2024, 41, 1513-20.
72. Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. LixCoO2 (0 < x < -1): a new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783-9.
73. Kap, Ö.; Inan, A.; Er, M.; Horzum, N. Li-ion battery cathode performance from the electrospun binary LiCoO2 to ternary Li2CoTi3O8. J. Mater. Sci. Mater. Electron. 2020, 31, 8394-402.
74. Min, J. W.; Yim, C. J.; Im, W. B. Facile synthesis of electrospun Li1.2Ni0.17Co0.17Mn0.5O2 nanofiber and its enhanced high-rate performance for lithium-ion battery applications. ACS. Appl. Mater. Interfaces. 2013, 5, 7765-9.
75. Jin, Y.; Zong, X.; Zhang, X.; Jia, Z.; Tan, S.; Xiong, Y. Cathode structural design enabling interconnected ionic/electronic transport channels for high-performance solid-state lithium batteries. J. Power. Sources. 2022, 530, 231297.
76. Zhao, J.; Kang, T.; Chu, Y.; et al. A polyimide cathode with superior stability and rate capability for lithium-ion batteries. Nano. Res. 2019, 12, 1355-60.
77. Li, D.; Cheng, H.; Hao, X.; et al. Wood-derived freestanding carbon-based electrode with hierarchical structure for industrial-level hydrogen production. Adv. Mater. 2024, 36, e2304917.
78. Cao, Z.; Sang, M.; Chen, S.; et al. In situ constructed (010)-oriented LiFePO4 nanocrystals/carbon nanofiber hybrid network: Facile synthesis of free-standing cathodes for lithium-ion batteries. Electrochim. Acta. 2020, 333, 135538.
79. Chen, L. L.; Yang, H.; Jing, M. X.; et al. A novel all-fiber-based LiFePO4/Li4Ti5O12 battery with self-standing nanofiber membrane electrodes. Beilstein. J. Nanotechnol. 2019, 10, 2229-37.
80. Peng, Y.; Tan, R.; Ma, J.; Li, Q.; Wang, T.; Duan, X. Electrospun Li3V2(PO4)3 nanocubes/carbon nanofibers as free-standing cathodes for high-performance lithium-ion batteries. J. Mater. Chem. A. 2019, 7, 14681-8.
81. Jing, M.; Pi, Z.; Zhai, H.; et al. Three-dimensional Li3V2(PO4)3/C nanowire and nanofiber hybrid membrane as a self-standing, binder-free cathode for lithium ion batteries. RSC. Adv. 2016, 6, 71574-80.
82. Yang, S.; Pei, C.; Zhang, D.; et al. Hierarchical porous N-doped carbon nanofibers with encapsulated Li3VO4 nanoparticles for lithium-ion storage. ACS. Appl. Nano. Mater. 2024, 7, 827-35.
83. Wang, Z.; Kang, K.; Wu, J.; et al. Comparative effects of electrospinning ways for fabricating green, sustainable, flexible, porous, nanofibrous cellulose/chitosan carbon mats as anode materials for lithium-ion batteries. J. Mater. Res. Technol. 2021, 11, 50-61.
84. Han, X.; Guo, H.; Xing, B.; et al. A facile electrospinning strategy to prepare cost-effective carbon fibers as a self-supporting anode for lithium-ion batteries. Fuel 2024, 373, 132277.
85. Rao, X.; Lou, Y.; Zhao, J.; et al. Carbon nanofibers derived from carbonization of electrospinning polyacrylonitrile (PAN) as high performance anode material for lithium ion batteries. J. Porous. Mater. 2023, 30, 403-19.
86. Xu, H.; Hou, X.; Yang, Y.; et al. Flexible and crosslinking electrospun porous carbon nanofiber membranes as freestanding binder-free anodes for lithium-ion batteries. J. Energy. Storage. 2024, 86, 111281.
87. Charkhesht, V.; Yarar, K. B.; Alkan, G. S.; Yürüm, A. Electrospun nanotubular titania and polymeric interfaces for high energy density Li-ion electrodes. Energy. Fuels. 2023, 37, 6197-207.
88. Zhou, Y.; Xiao, S.; Jiang, J.; Wu, R.; Niu, X.; Chen, J. S. In-situ construction of Li4Ti5O12/rutile TiO2 heterostructured nanorods for robust and high-power lithium storage. Nano. Res. 2023, 16, 1513-21.
89. Cao, K.; Zhu, Y.; He, H.; et al. Zero-strain sodium lanthanum titanate perovskite embedded in flexible carbon fibers as a long-span anode for lithium-ion batteries. ACS. Appl. Mater. Interfaces. 2024, 16, 11421-30.
90. Chen, Y.; Cheng, J.; Wang, A.; et al. The enhanced performance of Li-ion batteries based on Co-MOF/MXene composites. Inorg. Chem. Commun. 2024, 159, 111793.
91. Liu, J.; Ma, L.; Li, S.; et al. Three-dimensional architecture using hollow Cu/C nanofiber interpenetrated with MXenes for high-rate lithium-ion batteries. Rare. Met. 2023, 42, 3378-86.
92. Xiao, J.; Jin, Q.; Cang, R.; Gao, H.; Yao, J. Carbon-coated MXene nanofiber as a free-standing electrode for high-performance lithium-ion storage. Electrochim. Acta. 2023, 451, 142289.
93. Yang, M.; Liu, L.; Yan, H.; et al. Porous nitrogen-doped Sn/C film as free-standing anodes for lithium ion batteries. Appl. Surf. Sci. 2021, 551, 149246.
94. Zhu, S.; Huang, A.; Wang, Q.; Xu, Y. MOF-derived porous carbon nanofibers wrapping Sn nanoparticles as flexible anodes for lithium/sodium ion batteries. Nanotechnology 2021, 32, 165401.
95. Xin, Y.; Mou, H.; Miao, C.; et al. Encapsulating Sn-Cu alloy particles into carbon nanofibers as improved performance anodes for lithium-ion batteries. J. Alloys. Compd. 2022, 922, 166176.
96. Li, W.; Peng, J.; Li, H.; et al. Encapsulating nanoscale silicon inside carbon fiber as flexible self-supporting anode material for lithium-ion battery. ACS. Appl. Energy. Mater. 2021, 4, 8529-37.
97. Zeng, L.; Xi, H.; Liu, X.; Zhang, C. Coaxial electrospinning construction Si@C core-shell nanofibers for advanced flexible lithium-ion batteries. Nanomaterials 2021, 11, 3454.
98. Sun, N.; Wang, X.; Dong, X.; Huang, H.; Qi, M. PVP-grafted synthesis for uniform electrospinning silica@carbon nanofibers as flexible free-standing anode for Li-ion batteries. Solid. State. Ion. 2022, 374, 115817.
99. Xian, Z.; Tao, J.; Yu, J.; et al. Si@SiOx/CNF flexible anode prepared by electrospinning for Li-ion batteries. Russ. J. Electrochem. 2023, 59, 430-40.
100. Li, X.; Wang, X.; Li, J.; et al. High-performance, flexible, binder-free silicon-carbon anode for lithium storage applications. Electrochem. Commun. 2022, 137, 107257.
101. Zhu, R.; Wang, Z.; Hu, X.; Liu, X.; Wang, H. Silicon in hollow carbon nanospheres assembled microspheres cross-linked with N-doped carbon fibers toward a binder free, high performance, and flexible anode for lithium-ion batteries. Adv. Funct. Mater. 2021, 31, 2101487.
102. Zhang, T.; Huang, T.; Li, X.; et al. Ultra-high rapid-charging performance of 1D germanium anode materials for lithium-ion batteries. J. Alloys. Compd. 2024, 976, 173287.
103. Sheng, X.; Li, T.; Sun, M.; et al. Flexible electrospun iron compounds/carbon fibers: phase transformation and electrochemical properties. Electrochim. Acta. 2022, 407, 139892.
104. Su, Y.; Fu, B.; Yuan, G.; et al. Three-dimensional mesoporous γ-Fe2O3@carbon nanofiber network as high performance anode material for lithium- and sodium-ion batteries. Nanotechnology 2020, 31, 155401.
105. Xie, F.; Sheng, X.; Ling, Z.; et al. Flexible electrospun iron/manganese-based compounds/carbon fibers: phase transformation and electrochemical properties. Electrochim. Acta. 2023, 470, 143288.
106. Velásquez, C.; Vásquez, F.; Alvarez-Láinez, M.; Zapata-González, A.; Calderón, J. Carbon nanofibers impregnated with Fe3O4 nanoparticles as a flexible and high capacity negative electrode for lithium-ion batteries. J. Alloys. Compd. 2021, 862, 158045.
107. Rosaiah, P.; Niyitanga, T.; Sambasivam, S.; Kim, H. Graphene based magnetite carbon nanofiber composites as anodes for high-performance Li-ion batteries. New. J. Chem. 2022, 47, 482-90.
108. Guo, Y.; Zhang, D.; Bai, Z.; et al. MXene nanofibers confining MnOx nanoparticles: a flexible anode for high-speed lithium ion storage networks. Dalton. Trans. 2022, 51, 1423-33.
109. Kim, K.; Song, Y.; Ahn, H. Quantum dot-derived carbon nanopocket-confined Co3O4 within mesoporous carbon nanofiber for Cu-free anode of flexible Li-ion batteries. Appl. Surf. Sci. 2023, 637, 157905.
110. Xia, J.; Zhang, X.; Yang, Y.; Wang, X.; Yao, J. Electrospinning fabrication of flexible, foldable, and twistable Sb2S3/TiO2/C nanofiber anode for lithium ion batteries. Chem. Eng. J. 2021, 413, 127400.
111. Kim, Y.; Samuel, E.; Huh, J.; An, S.; Lee, H.; Yoon, S. S. Carbon-nickel core-shell nanofibers decorated with bimetallic nickel-gallium chalcogenide nanosheets as flexible, binder-free lithium-ion-battery anodes. Intl. J. Energy. Res. 2022, 46, 21797-811.
112. Zhang, C.; Shen, L.; Shen, J.; et al. Anion-sorbent composite separators for high-rate lithium-ion batteries. Adv. Mater. 2019, 31, e1808338.
113. Zhan, L.; Song, X.; Deng, W.; et al. Facile approach to prepare FeP2/P/C nanofiber heterostructure via electrospinning as highly performance self-supporting anode for Li/Na ion batteries. Electrochim. Acta. 2022, 403, 139682.
114. Li, X.; Guan, G.; Yu, C.; et al. Enhanced electrochemical performances based on ZnSnO3 microcubes functionalized in-doped carbon nanofibers as free-standing anode materials. Dalton. Trans. 2023, 52, 11187-95.
115. Tan, F.; Guo, H.; Wang, Z.; et al. Electrospinning-enabled SiO@TiO2/C fibers as anode materials for lithium-ion batteries. J. Alloys. Compd. 2021, 888, 161635.
116. Mou, H.; Chen, S.; Xiao, W.; et al. Encapsulating homogenous ultra-fine SnO2/TiO2 particles into carbon nanofibers through electrospinning as high-performance anodes for lithium-ion batteries. Ceram. Int. 2021, 47, 19945-54.
117. Gao, L.; Liang, H.; Li, J.; Cheng, B.; Deng, N.; Kang, W. The high-strength and ultra-thin composite electrolyte using one-step electrospinning/electrostatic spraying process for interface control in all-solid-state lithium metal battery. J. Power. Sources. 2021, 515, 230622.
118. Fang, Z.; Zhao, M.; Peng, Y.; Guan, S. Combining organic plastic salts with a bicontinuous electrospun PVDF-HFP/Li7La3Zr2O12 membrane: LiF-rich solid-electrolyte interphase enabling stable solid-state lithium metal batteries. ACS. Appl. Mater. Interfaces. 2022, 14, 18922-34.
119. Wang, L.; Yan, J.; Zhang, R.; et al. Core-shell pmia@ PVDF-HFP/Al2O3 nanofiber mats in situ coaxial electrospun on LiFePO4 electrode as matrices for gel electrolytes. ACS. Appl. Mater. Interfaces. 2021, 13, 9875-84.
120. Xiao, W.; Cheng, D.; Huang, L.; Song, J.; Yang, Z.; Qiao, Q. An integrated separator/anode assembly based on electrospinning technique for advanced lithium-ion batteries. Electrochim. Acta. 2021, 389, 138776.
121. Shi, S.; Ming, Y.; Wu, H.; et al. A bionic skin for health management: excellent breathability, in situ sensing, and big data analysis. Adv. Mater. 2024, 36, e2306435.
122. Chen, Q.; Akram, W.; Cao, Y.; Ge, C.; Lin, T.; Fang, J. Recent progress in the fabrication and processing of triboelectric yarns. Carbon. Neutralization. 2023, 2, 63-89.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.