REFERENCES
1. Patil, V. V.; Pujari, S. S.; Bhosale, S. B.; et al. Hydrous and amorphous cobalt phosphate thin-film electrodes synthesized by the SILAR method for high-performing flexible hybrid energy storage devices. Energy. Fuels. 2022, 36, 12791-806.
2. Reddy, C. V.; Reddy, I. N.; Ravindranadh, K.; et al. Effect of noble metal ions dopants on solar photoelectrochemical water splitting and electrochemical supercapacitive performance of BiVO4 hollow tubes. Sol. Energy. Mater. Sol. Cells. 2021, 226, 111056.
3. Ismail KB, Arun Kumar M, Jayavel R, Arivanandhan M, Mohamed Ismail MA. Enhanced electrochemical performance of the MoS2/Bi2S3 nanocomposite-based electrode material prepared by a hydrothermal method for supercapacitor applications. RSC. Adv. 2023, 13, 24272-85.
4. Jiao, S.; Zhou, A.; Wu, M.; Hu, H. Kirigami patterning of MXene/bacterial cellulose composite paper for all-solid-state stretchable micro-supercapacitor arrays. Adv. Sci. 2019, 6, 1900529.
5. Liu, H.; Liu, X.; Wang, S.; Liu, H.; Li, L. Transition metal based battery-type electrodes in hybrid supercapacitors: a review. Energy. Storage. Mater. 2020, 28, 122-45.
6. Dubal, D. P.; Patil, D. R.; Patil, S. S.; Munirathnam, N. R.; Gomez-Romero, P. BiVO4 fern architectures: a competitive anode for lithium-ion batteries. ChemSusChem 2017, 10, 4163-9.
7. Devi, N.; Ray, S. S. Performance of bismuth-based materials for supercapacitor applications: a review. Mater. Today. Commun. 2020, 25, 101691.
8. Shinde, N. M.; Shinde, P. V.; Mane, R. S.; Ho, K. K. Solution-method processed Bi-type nanoelectrode materials for supercapacitor applications: a review. Renew. Sustainable. Energy. Rev. 2021, 135, 110084.
9. Cao, Z.; Fu, J.; Wu, M.; Hua, T.; Hu, H. Synchronously manipulating Zn2+ transfer and hydrogen/oxygen evolution kinetics in MXene host electrodes toward symmetric Zn-ions micro-supercapacitor with enhanced areal energy density. Energy. Storage. Mater. 2021, 40, 10-21.
10. Isacfranklin, M.; Deepika, C.; Ravi, G.; Yuvakkumar, R.; Velauthapillai, D.; Saravanakumar, B. Nickel, bismuth, and cobalt vanadium oxides for supercapacitor applications. Ceram. Int. 2020, 46, 28206-10.
11. Patil, S. S.; Dubal, D. P.; Tamboli, M. S.; et al. Ag:BiVO4 dendritic hybrid-architecture for high energy density symmetric supercapacitors. J. Mater. Chem. A. 2016, 4, 7580-4.
12. Deeloed, W.; Priamushko, T.; Čížek, J.; Suramitr, S.; Kleitz, F. Defect-engineered hydroxylated mesoporous spinel oxides as bifunctional electrocatalysts for oxygen reduction and evolution reactions. ACS. Appl. Mater. Interfaces. 2022, 14, 23307-21.
13. Xie, X.; Du, L.; Yan, L.; et al. Oxygen evolution reaction in alkaline environment: material challenges and solutions. Adv. Funct. Mater. 2022, 32, 2110036.
14. Heckel, S.; Wittmann, M.; Reid, M.; Villa, K.; Simmchen, J. An account on BiVO4 as photocatalytic active matter. Acc. Mater. Res. 2024, 5, 400-12.
15. Kubba, D.; Ahmed, I.; Kour, P.; et al. LaCoO3 perovskite nanoparticles embedded in NiCo2O4 nanoflowers as electrocatalysts for oxygen evolution. ACS. Appl. Nano. Mater. 2022, 5, 16344-53.
16. Shen, M.; Ma, H. Metal-organic frameworks (MOFs) and their derivative as electrode materials for lithium-ion batteries. Coord. Chem. Rev. 2022, 470, 214715.
17. Lin, W.; Zhao, S.; Lu, B.; Jiang, F.; Lu, Z.; Xu, Z. Structures, performances and applications of green biomass derived carbon in lithium-ion batteries. Energy. Mater. 2024, 4, 400078.
18. Chettiannan, B.; Dhandapani, E.; Arumugam, G.; Rajendran, R.; Selvaraj, M. Metal-organic frameworks: a comprehensive review on common approaches to enhance the energy storage capacity in supercapacitor. Coord. Chem. Rev. 2024, 518, 216048.
19. Li, J.; Jia, J.; Wang, D.; Dong, H.; Zhu, M. Recent research progress of MOFs-based heterostructures for photocatalytic hydrogen evolution. Chem. Eng. J. 2024, 498, 155194.
20. Qi, Q.; Zhang, C.; Hu, J. Triggered factors and structure-activity relationship in the dynamic reconstruction processing of MOF for the alkaline oxygen evolution reaction. Coord. Chem. Rev. 2025, 522, 216235.
21. Khan, M. S.; Li, Y.; Yang, L.; et al. Improving capacitive deionization performance through tailored iodine-loaded ZIF-8 composites. Desalination 2024, 579, 117486.
22. Li, S.; Gao, Y.; Li, N.; Ge, L.; Bu, X.; Feng, P. Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy. Environ. Sci. 2021, 14, 1897-927.
23. Du, J.; Li, F.; Sun, L. Metal-organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction. Chem. Soc. Rev. 2021, 50, 2663-95.
24. Zhu, Z.; Duan, J.; Chen, S. Metal-organic framework (MOF)-based clean energy conversion: recent advances in unlocking its underlying mechanisms. Small 2024, 20, 2309119.
25. Reddy C, Neelakanta Reddy I, Koutavarapu R, Reddy KR, Kim D, Shim J. Novel BiVO4 nanostructures for environmental remediation, enhanced photoelectrocatalytic water oxidation and electrochemical energy storage performance. Solar. Energy. 2020, 207, 441-9.
26. Chaudhari, S.; Patil, V.; Jadhav, V.; et al. Linker encouraged solid state synthesis of MOF derived Z-scheme NiCo2O4/NiO/C toward efficient removal of organic and inorganic pollutants from water. Langmuir 2024, 40, 19804-15.
27. Sonkawade, A. R.; Mahajan, S. S.; Shelake, A. R.; et al. The g-C3N4/rGO composite for high-performance supercapacitor: synthesis, characterizations, and time series modeling and predictions. Int. J. Hydrogen. Energy. 2024, 87, 1416-26.
28. Kolhe, N. D.; Walekar, L. S.; Kadam, A. N.; et al. MOF derived in-situ construction of core-shell Z-scheme BiVO4@ -Fe2O3-CF nanocomposites for efficient photocatalytic treatment of organic pollutants under visible light. J. Clean. Prod. 2023, 420, 138179.
29. Packiaraj, R.; Venkatesh, K.; Devendran, P.; Bahadur, S. A.; Nallamuthu, N. Structural, morphological and electrochemical studies of nanostructured BiVO4 for supercapacitor application. Mater. Sci. Semicond. Process. 2020, 115, 105122.
30. Mathad, S. N.; Jadhav, R. N.; Patil, N. D.; Puri, V. Structural and mechanical properties of Sr+2-doped bismuth manganite thick films. Int. J. Self-Propag. High-Temp. Synth. 2013, 22, 180-4.
31. Orimolade, B. O.; Arotiba, O. A. An exfoliated graphite-bismuth vanadate composite photoanode for the photoelectrochemical degradation of acid orange 7 dye. Electrocatalysis 2019, 10, 429-35.
32. Samsudin, M. F. R.; Jayabalan, P. J.; Ong, W.; Ng, Y. H.; Sufian, S. Photocatalytic degradation of real industrial poultry wastewater via platinum decorated BiVO4/g-C3N4 photocatalyst under solar light irradiation. J. Photochem. Photobiol. A. Chem. 2019, 378, 46-56.
33. Biswas, M. R. U. D.; Ho, B. S.; Oh, W. Eco-friendly conductive polymer-based nanocomposites, BiVO4/graphene oxide/polyaniline for excellent photocatalytic performance. Polym. Bull. 2020, 77, 4381-400.
34. Sajid, M. M.; Khan, S. B.; Javed, Y.; et al. Facile synthesis of Se/BiVO4 heterojunction composite and evaluation of synergetic reaction mechanism for efficient photocatalytic staining of organic dye pollutants in wastewater under visible light. J. Mater. Sci. Mater. Electron. 2020, 31, 19599-612.
35. Phanichphant, S.; Nakaruk, A.; Chansaenpak, K.; Channei, D. Evaluating the photocatalytic efficiency of the BiVO4/rGO photocatalyst. Sci. Rep. 2019, 9, 16091.
36. Patil, V. V.; Kumar, N.; Salunkhe, R. R.; et al. Crystallinity transformation engineering of hydrous cobalt nickel phosphate cathodes for hybrid supercapacitor devices: extrinsic/battery to intercalation type pseudocapacitors. Chem. Eng. J. 2024, 485, 150055.
37. Subramanyam, P.; Khan, T.; Neeraja, S. G.; Suryakala, D.; Subrahmanyam, C. Plasmonic Bi nanoparticle decorated BiVO4/rGO as an efficient photoanode for photoelectrochemical water splitting. Int. J. Hydrogen. Energy. 2020, 45, 7779-87.
38. Patil, S. S.; Dubal, D. P.; Deonikar, V. G.; et al. Fern-like rGO/BiVO4 hybrid nanostructures for high-energy symmetric supercapacitor. ACS. Appl. Mater. Interfaces. 2016, 8, 31602-10.
39. Biesinger, M. C. Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis: insights from a multi-user facility data review. Appl. Surf. Sci. 2022, 597, 153681.
40. Wu, J.; Chen, Y.; Pan, L.; et al. Multi-layer monoclinic BiVO4 with oxygen vacancies and V4+ species for highly efficient visible-light photoelectrochemical applications. Appl. Catal. B. Environ. 2018, 221, 187-95.
41. Guo, M.; Wang, Y.; He, Q.; et al. Enhanced photocatalytic activity of S-doped BiVO4 photocatalysts. RSC. Adv. 2015, 5, 58633-9.
42. Nguyen, T. D.; Bui, Q. T. P.; Le, T. B.; et al. Co2+ substituted for Bi3+ in BiVO4 and its enhanced photocatalytic activity under visible LED light irradiation. RSC. Adv. 2019, 9, 23526-34.
43. Mir, R. A.; Pandey, O. P. Role of morphological features and oxygen vacancies on electrocatalytic oxygen evolution reaction (OER) activity and pseudocapacitance performance of BiVO4 structures. Appl. Phys. Lett. 2021, 118, 253902.
44. Patil, V. V.; Pujari, S. S.; Bhosale, S. B.; et al. SILAR synthesized binder-free, hydrous cobalt phosphate thin film electrocatalysts for OER application: annealing effect on the electrocatalytic activity. Int. J. Energy. Res. 2023, 2023, 5570480.