REFERENCES
1. Jiang, M.; Danilov, D. L.; Eichel, R.; Notten, P. H. L. A review of degradation mechanisms and recent achievements for Ni-rich cathode-based Li-ion batteries. Adva. Energy. Mater. 2021, 11, 2103005.
2. Xu, C.; Reeves, P. J.; Jacquet, Q.; Grey, C. P. Phase behavior during electrochemical cycling of Ni-rich cathode materials for Li-ion batteries. Adv. Energy. Mater. 2021, 11, 2003404.
3. Du, B.; Mo, Y.; Jin, H.; et al. Radially microstructural design of LiNi0.8Co0.1Mn0.1O2 cathode material toward long-term cyclability and high rate capability at high voltage. ACS. Appl. Energy. Mater. 2020, 3, 6657-69.
4. Han, J. G.; Kim, K.; Lee, Y.; Choi, N. S. Scavenging materials to stabilize LiPF6-containing carbonate-based electrolytes for Li-ion batteries. Adv. Mater. 2019, 31, e1804822.
5. Liu, S.; Liu, Z.; Shen, X.; et al. Surface Doping to enhance structural integrity and performance of Li-rich layered oxide. Adv. Energy. Mater. 2018, 8, 1802105.
6. Han, J.; Hwang, C.; Kim, S. H.; et al. An antiaging electrolyte additive for high-energy-density lithium-ion batteries. Adv. Energy. Mater. 2020, 10, 2000563.
7. Hou, Q.; Cao, G.; Wang, P.; et al. Carbon coating nanostructured-LiNi1/3Co1/3Mn1/3O2 cathode material synthesized by chemical vapor deposition method for high performance lithium-ion batteries. J. Alloys. Compd. 2018, 747, 796-802.
8. Chen, X.; Ma, F.; Li, Y.; et al. Nitrogen-doped carbon coated LiNi0.6Co0.2Mn0.2O2 cathode with enhanced electrochemical performance for Li-ion batteries. Electrochim. Acta. 2018, 284, 526-33.
9. Hwang, J.; Do, K.; Ahn, H. Highly conductive 3D structural carbon network-encapsulated Ni-rich LiNi0.8Co0.1Mn0.1O2 as depolarized and passivated cathode for lithium-ion batteries. Chem. Eng. J. 2021, 406, 126813.
10. Noh, H.; Youn, S.; Yoon, C. S.; Sun, Y. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power. Sources. 2013, 233, 121-30.
11. Zhang, Y.; Li, J.; Tan, S.; et al. Fullerene-derivative C60-(OLi)n modified separators toward stable wide-temperature lithium metal batteries. Chem. Eng. J. 2022, 446, 137207.
12. Zhang, X.; Hsu, C. H.; Ren, X.; et al. Supramolecular [60]fullerene liquid crystals formed by self-organized two-dimensional crystals. Angew. Chem. Int. Ed. 2015, 54, 114-7.
13. Tada, T.; Ishida, Y.; Saigo, K. Synthesis and reactions of 2,2-[60]fullerenoalkanoyl chlorides. J. Org. Chem. 2006, 71, 1633-9.
14. Lu, H.; Chen, X.; Li, X.; Sun, W.; Wang, Y.; Tu, Y. Effect of flexible spacer and alkyl tail length on the liquid crystalline phase behavior of fullerene block molecules. Chemistry 2023, 29, e202301015.
15. Castel, E.; Berg, E. J.; El, K. M.; Novák, P.; Villevieille, C. Differential electrochemical mass spectrometry study of the interface of xLi2MnO3·(1 - x)LiMO2 (M=Ni, Co, and Mn) material as a positive electrode in Li-ion batteries. Chem. Mater. 2014, 26, 5051-7.
16. Hong, J.; Lim, H.; Lee, M.; et al. Critical role of oxygen evolved from layered Li-excess metal oxides in lithium rechargeable batteries. Chem. Mater. 2012, 24, 2692-7.
17. Gan, Q.; Qin, N.; Zhu, Y.; et al. Polyvinylpyrrolidone-induced uniform surface-conductive polymer coating endows Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced cyclability for lithium-ion batteries. ACS. Appl. Mater. Interfaces. 2019, 11, 12594-604.
18. Guo, F.; Xie, Y.; Zhang, Y. Tuning Li-excess to optimize Ni/Li exchange and improve stability of structure in LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries. Nano. Res. 2022, 15, 8962-71.
19. Park, K.; Jung, H.; Kuo, L.; Kaghazchi, P.; Yoon, C. S.; Sun, Y. Improved cycling stability of Li[Ni0.90Co0.05Mn0.05]O2 through microstructure modification by boron doping for Li-ion batteries. Adv. Energy. Mater. 2018, 8, 1801202.
20. Zhang, J.; Li, J.; Cao, L.; et al. Surface-targeted functionalization of nickel-rich cathodes through synergistic slurry additive approach with multi-level impact using minimal quantity. Nano. Res. 2024, 17, 333-43.
21. Liu, H.; Wolfman, M.; Karki, K.; et al. Intergranular cracking as a major cause of long-term capacity fading of layered cathodes. Nano. Lett. 2017, 17, 3452-7.
22. Ni, L.; Chen, H.; Gao, J.; et al. Multiscale crystal field effect for high-performance ultrahigh-Ni layered cathode. ACS. Nano. 2023, 17, 12759-73.
23. Wu, Y.; Liu, X.; Wang, L.; et al. Development of cathode-electrolyte-interphase for safer lithium batteries. Energy. Storage. Mater. 2021, 37, 77-86.
24. Yi, M.; Dolocan, A.; Manthiram, A. Stabilizing the interphase in cobalt-free, ultrahigh-nickel cathodes for lithium-ion batteries. Adv. Funct. Mater. 2023, 33, 2213164.
25. Kim, N.; Moon, J.; Ryou, M.; et al. Amphiphilic bottlebrush polymeric binders for high-mass-loading cathodes in lithium-ion batteries. Adv. Energy. Mater. 2022, 12, 2102109.
26. Li, J.; Manthiram, A. A Comprehensive analysis of the interphasial and structural evolution over long-term cycling of ultrahigh-nickel cathodes in lithium-ion batteries. Adv. Energy. Mater. 2019, 9, 1902731.
27. Zheng, Y.; Chen, L.; Su, Y.; et al. An interfacial framework for breaking through the Li-ion transport barrier of Li-rich layered cathode materials. J. Mater. Chem. A. 2017, 5, 24292-8.
28. Gu, M.; Belharouak, I.; Zheng, J.; et al. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS. Nano. 2013, 7, 760-7.
29. He, J.; Melinte, G.; Darma, M. S. D.; et al. Surface structure evolution and its impact on the electrochemical performances of aqueous-processed high-voltage spinel LiNi0.5Mn1.5O4 cathodes in lithium-ion batteries. Adv. Funct. Mater. 2022, 32, 2207937.
30. Xie, Q.; Li, W.; Manthiram, A. A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries. Chem. Mater. 2019, 31, 938-46.
31. Pham, H. Q.; Mirolo, M.; Tarik, M.; El, K. M.; Trabesinger, S. Multifunctional electrolyte additive for improved interfacial stability in Ni-rich layered oxide full-cells. Energy. Storage. Mater. 2020, 33, 216-29.
32. Qian, R.; Liu, Y.; Cheng, T.; et al. Enhanced surface chemical and structural stability of Ni-rich cathode materials by synchronous lithium-ion conductor coating for lithium-ion batteries. ACS. Appl. Mater. Interfaces. 2020, 12, 13813-23.
33. Li, S.; Yang, L.; Liu, Z.; et al. Surface Al-doping for compromise between facilitating oxygen redox and enhancing structural stability of Li-rich layered oxide. Energy. Storage. Mater. 2023, 55, 356-63.
34. Tang, Y.; Deng, J.; Li, W.; et al. Water-soluble sericin protein enabling stable solid-electrolyte interphase for fast charging high voltage battery electrode. Adv. Mater. 2017, 29.
35. Zhang, J.; Li, Q.; Wang, Y.; Zheng, J.; Yu, X.; Li, H. Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode. Energy. Storage. Mater. 2018, 14, 1-7.
36. Syzdek, J.; Marcinek, M.; Kostecki, R. Electrochemical activity of carbon blacks in LiPF6-based organic electrolytes. J. Power. Sources. 2014, 245, 739-44.
37. Mu, P.; Zhang, H.; Jiang, H.; et al. Bioinspired antiaging binder additive addressing the challenge of chemical degradation of electrolyte at cathode/electrolyte interphase. J. Am. Chem. Soc. 2021, 143, 18041-51.
38. Rong, H.; Xu, M.; Zhu, Y.; et al. A novel imidazole-based electrolyte additive for improved electrochemical performance of high voltage nickel-rich cathode coupled with graphite anode lithium ion battery. J. Power. Sources. 2016, 332, 312-21.
39. Shi, X.; Zheng, T.; Xiong, J.; Zhu, B.; Cheng, Y. J.; Xia, Y. Stable electrode/electrolyte interface for high-voltage NCM 523 cathode constructed by synergistic positive and passive approaches. ACS. Appl. Mater. Interfaces. 2021, 13, 57107-17.
40. Wu, Z.; Xue, L.; Ren, W.; Li, F.; Wen, L.; Cheng, H. A LiF nanoparticle-modified graphene electrode for high-power and high-energy lithium ion batteries. Adv. Funct. Mater. 2012, 22, 3290-7.
41. Chen, Z.; Kim, G.; Chao, D.; et al. Toward greener lithium-ion batteries: aqueous binder-based LiNi0.4Co0.2Mn0.4O2 cathode material with superior electrochemical performance. J. Power. Sources. 2017, 372, 180-7.
42. Li, L.; Fu, L.; Li, M.; et al. B-doped and La4NiLiO8-coated Ni-rich cathode with enhanced structural and interfacial stability for lithium-ion batteries. J. Energy. Chem. 2022, 71, 588-94.
43. He, M.; Su, C.; Feng, Z.; et al. High voltage LiNi0.5Mn0.3Co0.2O2/graphite cell cycled at 4.6 V with a FEC/HFDEC-based electrolyte. Adv. Energy. Mater. 2017, 7, 1700109.