1. Bradshaw, A.; Schleicher, K. Electrical conductivity of seawater. IEEE. J. Ocean. Eng. 1980, 5, 50-62.
2. Yu, Z.; Liu, L. Recent advances in hybrid seawater electrolysis for hydrogen production. Adv. Mater. 2024, 36, e2308647.
3. Liu, G.; Xu, Y.; Yang, T.; Jiang, L. Recent advances in electrocatalysts for seawater splitting. Nano. Mater. Sci. 2023, 5, 101-16.
4. Fei, H.; Liu, R.; Liu, T.; et al. Direct seawater electrolysis: from catalyst design to device applications. Adv. Mater. 2024, 36, e2309211.
5. Hu, H.; Wang, X.; Attfield, J. P.; Yang, M. Metal nitrides for seawater electrolysis. Chem. Soc. Rev. 2024, 53, 163-203.
6. Tong, W.; Forster, M.; Dionigi, F.; et al. Electrolysis of low-grade and saline surface water. Nat. Energy. 2020, 5, 367-77.
7. Xiao, X.; Yang, L.; Sun, W.; et al. Electrocatalytic water splitting: from harsh and mild conditions to natural seawater. Small 2022, 18, e2105830.
8. Liu, Y.; Wang, Y.; Fornasiero, P.; Tian, G.; Strasser, P.; Yang, X. Long-term durability of seawater electrolysis for hydrogen: from catalysts to systems. Angew. Chem. Int. Ed. 2024, 136, e202412087.
9. Karlsson, R. K.; Cornell, A. Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes. Chem. Rev. 2016, 116, 2982-3028.
10. Bahuguna, G.; Patolsky, F. Routes to avoiding chlorine evolution in seawater electrolysis: recent perspective and future directions. ACS. Mater. Lett. 2024, 6, 3202-17.
11. Bahuguna, G.; Patolsky, F. Why today’s “water” in water splitting is not natural water? Critical up-to-date perspective and future challenges for direct seawater splitting. Nano. Energy. 2023, 117, 108884.
12. Haq, T. U.; Haik, Y. Strategies of anode design for seawater electrolysis: recent development and future perspective. Small. Sci. 2022, 2, 2200030.
13. Liang, J.; Li, Z.; He, X.; et al. Electrocatalytic seawater splitting: nice designs, advanced strategies, challenges and perspectives. Mater. Today. 2023, 69, 193-235.
14. Gouda, V. K.; Banat, I. M.; Riad, W. T.; Mansour, S. Microbiologically induced corrosion of UNS N04400 in seawater. Corrosion 1993, 49, 63-73.
15. Oh, B. S.; Oh, S.; Jung, Y. J.; Hwang, Y.; Kang, J.; Kim, I. S. Evaluation of a seawater electrolysis process considering formation of free chlorine and perchlorate. Desalination. Water. Treat. 2010, 18, 245-50.
16. Kang, X.; Yang, F.; Zhang, Z.; et al. A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer. Nat. Commun. 2023, 14, 3607.
17. Park, Y. S.; Jeong, J.; Jang, M. J.; et al. Ternary layered double hydroxide oxygen evolution reaction electrocatalyst for anion exchange membrane alkaline seawater electrolysis. J. Energy. Chem. 2022, 75, 127-34.
18. Yang, P.; Liu, F.; Zang, X.; et al. Microwave quasi-solid state to construct strong metal-support interactions with interfacial electron-enriched Ru for anion exchange membrane electrolysis. Adv. Energy. Mater. 2024, 14, 2303384.
19. Hu, H.; Zhang, Z.; Liu, L.; et al. Efficient and durable seawater electrolysis with a V2O3-protected catalyst. Sci. Adv. 2024, 10, eadn7012.
20. Chang, J.; Wang, G.; Yang, Z.; et al. Dual-doping and synergism toward high-performance seawater electrolysis. Adv. Mater. 2021, 33, e2101425.
21. Xia, Y.; Guo, L.; Zhu, J.; et al. Manipulating electronic structure of nickel phosphide via asymmetric coordination interaction for anion-exchange membrane based seawater electrolysis. Appl. Catal. B. Environ. Energy. 2024, 351, 123995.
22. Song, L.; Guo, L.; Mao, J.; et al. Boosting hydrogen adsorption via manipulating the d-band center of ferroferric oxide for anion exchange membrane-based seawater electrolysis. ACS. Catal. 2024, 14, 6981-91.
23. Wang, H.; Jiang, N.; Huang, B.; Yu, Q.; Guan, L. Surface amorphization and functionalization of a NiFeOOH electrocatalyst for a robust seawater electrolyzer. EES. Catal. 2024, 2, 1092-9.
24. Li, Q.; Fu, X.; Li, H.; et al. Strong d-p orbital hybridization of Os-P via ultrafast microwave plasma assistance for anion exchange membrane electrolysis. Adv. Funct. Mater. 2024, 34, 2408517.
25. Cui, T.; Chi, J.; Liu, K.; et al. Manipulating the electron redistribution of Fe3O4 for anion exchange membrane based alkaline seawater electrolysis. Appl. Catal. B. Environ. Energy. 2024, 357, 124269.
26. Jun, S. E.; Myeong, S.; Cho, B.; et al. Exsolved Ru-mediated stabilization of MoO2-Ni4Mo electrocatalysts for anion exchange membrane water electrolysis and unbiased solar-driven saline water splitting. Appl. Catal. B. Environ. Energy. 2024, 358, 124364.
27. Lee, S. A.; Bu, J.; Lee, J.; Jang, H. W. High-entropy nanomaterials for advanced electrocatalysis. Small. Sci. 2023, 3, 2200109.
28. Choi, D.; Ryu, S. Efficient and selective oxygen evolution reaction in seawater electrolysis with electrochemically synthesized amorphous-like NiFeS. Electron. Mater. Lett. 2024, 20, 173-82.
29. Cho, Y. B.; Nguyen, D. C.; Hua, S. H.; Kim, Y. S. Direct detection of water-dissolved ammonia using paper-based analytical devices. J. Sensor. Sci. Technol. 2023, 32, 67-74.
30. Kim, J.; Kang, D.; Kim, S.; Jang, H. W. Catalyze materials science with machine learning. ACS. Mater. Lett. 2021, 3, 1151-71.
31. Vos, J. G.; Wezendonk, T. A.; Jeremiasse, A. W.; Koper, M. T. M. MnOx/IrOx as selective oxygen evolution electrocatalyst in acidic chloride solution. J. Am. Chem. Soc. 2018, 140, 10270-81.
32. Hu, H.; Zhang, Z.; Zhang, Y.; et al. An ultra-low Pt metal nitride electrocatalyst for sustainable seawater hydrogen production. Energy. Environ. Sci. 2023, 16, 4584-92.
33. Veroneau, S. S.; Nocera, D. G. Continuous electrochemical water splitting from natural water sources via forward osmosis. Proc. Natl. Acad. Sci. USA. 2021, 118, e2024855118.
34. Desai, D.; Beh, E. S.; Sahu, S.; et al. Electrochemical desalination of seawater and hypersaline brines with coupled electricity storage. ACS. Energy. Lett. 2018, 3, 375-9.
35. Loutatidou, S.; Chalermthai, B.; Marpu, P. R.; Arafat, H. A. Capital cost estimation of RO plants: GCC countries versus southern Europe. Desalination 2014, 347, 103-11.
36. Logan, B. E.; Shi, L.; Rossi, R. Enabling the use of seawater for hydrogen gas production in water electrolyzers. Joule 2021, 5, 760-2.
37. Lee, J. K.; Seo, J. H.; Lim, J.; Park, S.; Jang, H. W. Best practices in membrane electrode assembly for water electrolysis. ACS. Mater. Lett. 2024, 6, 2757-86.
38. Abbasi, R.; Setzler, B. P.; Lin, S.; et al. A roadmap to low-cost hydrogen with hydroxide exchange membrane electrolyzers. Adv. Mater. 2019, 31, e1805876.
39. Li, J.; Sun, J.; Li, Z.; Meng, X. Recent advances in electrocatalysts for seawater splitting in hydrogen evolution reaction. Int. J. Hydrogen. Energy. 2022, 47, 29685-97.
40. Lee, S. A.; Kim, J.; Kwon, K. C.; Park, S. H.; Jang, H. W. Anion exchange membrane water electrolysis for sustainable large-scale hydrogen production. Carbon. Neutral. 2022, 1, 26-48.
41. Vincent, I.; Bessarabov, D. Low cost hydrogen production by anion exchange membrane electrolysis: a review. Renew. Sustain. Energy. Rev. 2018, 81, 1690-704.
42. Shao, L.; Han, X.; Shi, L.; et al. In situ generation of molybdate-modulated nickel-iron oxide electrodes with high corrosion resistance for efficient seawater electrolysis. Adv. Energy. Mater. 2024, 14, 2303261.
43. Xu, W.; Wang, Z.; Liu, P.; et al. Ag nanoparticle-induced surface chloride immobilization strategy enables stable seawater electrolysis. Adv. Mater. 2024, 36, e2306062.
44. Zhang, S.; Xu, W.; Chen, H.; et al. Progress in anode stability improvement for seawater electrolysis to produce hydrogen. Adv. Mater. 2024, 36, e2311322.
45. Huang, C.; Zhou, Q.; Yu, L.; et al. Functional bimetal Co-modification for boosting large-current-density seawater electrolysis by inhibiting adsorption of chloride ions. Adv. Energy. Mater. 2023, 13, 2301475.
46. Gong, Z.; Liu, J.; Yan, M.; Gong, H.; Ye, G.; Fei, H. Highly durable and efficient seawater electrolysis enabled by defective graphene-confined nanoreactor. ACS. Nano. 2023, 17, 18372-81.
47. Fan, R.; Liu, C.; Li, Z.; et al. Ultrastable electrocatalytic seawater splitting at ampere-level current density. Nat. Sustain. 2024, 7, 158-67.
48. Liu, J.; Liu, X.; Shi, H.; et al. Breaking the scaling relations of oxygen evolution reaction on amorphous NiFeP nanostructures with enhanced activity for overall seawater splitting. Appl. Catal. B. Environ. 2022, 302, 120862.
49. Liu, H.; Shen, W.; Jin, H.; et al. High-performance alkaline seawater electrolysis with anomalous chloride promoted oxygen evolution reaction. Angew. Chem. Int. Ed. 2023, 62, e202311674.
50. Zhao, Y.; Adiyeri, S. D. P.; Huang, C.; et al. Oxygen evolution/reduction reaction catalysts: from in situ monitoring and reaction mechanisms to rational design. Chem. Rev. 2023, 123, 6257-358.
51. Dionigi, F.; Reier, T.; Pawolek, Z.; Gliech, M.; Strasser, P. Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis. ChemSusChem 2016, 9, 962-72.
52. Guo, J.; Zheng, Y.; Hu, Z.; et al. Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat. Energy. 2023, 8, 264-72.
53. Dresp, S.; Dionigi, F.; Loos, S.; et al. Direct electrolytic splitting of seawater: activity, selectivity, degradation, and recovery studied from the molecular catalyst structure to the electrolyzer cell level. Adv. Energy. Mater. 2018, 8, 1800338.
54. Jung, H.; Song, J.; Lee, Y.; et al. Computational discovery of optimal dopants for nickel iron oxyhydroxide to enhance OER activity and saline water compatibility. ACS. Energy. Lett. 2024, 9, 2162-72.
55. Zhang, S.; Wang, Y.; Li, S.; et al. Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode. Nat. Commun. 2023, 14, 4822.
56. Dresp, S.; Dionigi, F.; Klingenhof, M.; Strasser, P. Direct electrolytic splitting of seawater: opportunities and challenges. ACS. Energy. Lett. 2019, 4, 933-42.
57. Han, J.; Jwa, E.; Lee, H.; et al. Direct seawater electrolysis via synergistic acidification by inorganic precipitation and proton flux from bipolar membrane. Chem. Eng. J. 2022, 429, 132383.
58. Li, T.; Zhao, X.; Getaye, S. M.; et al. Phosphate-decorated Ni3Fe-LDHs@CoPx nanoarray for near-neutral seawater splitting. Chem. Eng. J. 2023, 460, 141413.
59. Li, J.; Yu, T.; Wang, K.; et al. Multiscale engineering of nonprecious metal electrocatalyst for realizing ultrastable seawater splitting in weakly alkaline solution. Adv. Sci. 2022, 9, e2202387.
60. Cai, Z.; Liang, J.; Li, Z.; et al. Stabilizing NiFe sites by high-dispersity of nanosized and anionic Cr species toward durable seawater oxidation. Nat. Commun. 2024, 15, 6624.
61. Li, P.; Zhao, S.; Huang, Y.; Huang, Q.; Yang, Y.; Yang, H. Multiscale structural engineering of a multilayered nanoarray electrode realizing boosted and sustained oxygen evolution catalysis in seawater electrolysis. ACS. Catal. 2023, 13, 15360-74.
62. Khan, M. A.; Al-Attas, T.; Roy, S.; et al. Seawater electrolysis for hydrogen production: a solution looking for a problem? Energy. Environ. Sci. 2021, 14, 4831-9.
63. Karoui, H.; Riffault, B.; Jeannin, M.; et al. Electrochemical scaling of stainless steel in artificial seawater: role of experimental conditions on CaCO3 and Mg(OH)2 formation. Desalination 2013, 311, 234-40.
64. Kang, W.; Meng, S.; Zhao, Y.; et al. Scaling-free cathodes: enabling electrochemical extraction of high-purity nano-CaCO3 and -Mg(OH)2 in seawater. Environ. Sci. Technol. 2024, 58, 14034-41.
65. Yi, L.; Chen, X.; Wen, Y.; et al. Solidophobic surface for electrochemical extraction of high-valued Mg(OH)2 coupled with H2 production from seawater. Nano. Lett. 2024, 24, 5920-8.
66. Lee, S.; Kim, E.; Lee, D.; Jang, K.; Park, J.; Choi, W. Y. Synthesis of seawater-derived superhydrophobic calcium carbonate via CO2 mineralization by utilizing L-Arginine/L-Lysine oleate-based self-assembly structures. Chem. Eng. J. 2024, 490, 151785.
67. Dresp, S.; Ngo, T. T.; Klingenhof, M.; Brückner, S.; Hauke, P.; Strasser, P. Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds. Energy. Environ. Sci. 2020, 13, 1725-9.
68. Zhou, Z.; Pei, Z.; Wei, L.; Zhao, S.; Jian, X.; Chen, Y. Electrocatalytic hydrogen evolution under neutral pH conditions: current understandings, recent advances, and future prospects. Energy. Environ. Sci. 2020, 13, 3185-206.
69. Rodriguez-blanco, J.; Shaw, S.; Bots, P.; Roncal-herrero, T.; Benning, L. The role of pH and Mg on the stability and crystallization of amorphous calcium carbonate. J. Alloys. Compd. 2012, 536, S477-9.
70. Yousefi, S.; Ghasemi, B.; Tajally, M.; Asghari, A. Optical properties of MgO and Mg(OH)2 nanostructures synthesized by a chemical precipitation method using impure brine. J. Alloys. Compd. 2017, 711, 521-9.
71. Chen, H.; Liu, P.; Li, W.; et al. Stable seawater electrolysis over 10 000 H via chemical fixation of sulfate on NiFeBa-LDH. Adv. Mater. 2024, 36, e2411302.
72. Liao, L.; Li, D.; Zhang, Y.; et al. Complementary multisite turnover catalysis toward superefficient bifunctional seawater splitting at ampere-level current density. Adv. Mater. 2024, 36, e2405852.
73. Liu, X.; Chi, J.; Mao, H.; Wang, L. Principles of designing electrocatalyst to boost reactivity for seawater splitting. Adv. Energy. Mater. 2023, 13, 2301438.
74. Tlili, M. M.; Benamor, M.; Gabrielli, C.; Perrot, H.; Tribollet, B. Influence of the interfacial pH on electrochemical CaCO3 precipitation. J. Electrochem. Soc. 2003, 150, C765.
75. Zheng, W.; Lee, L. Y. S.; Wong, K. Y. Improving the performance stability of direct seawater electrolysis: from catalyst design to electrode engineering. Nanoscale 2021, 13, 15177-87.
76. Liu, J.; Duan, S.; Shi, H.; et al. Rationally designing efficient electrocatalysts for direct seawater splitting: challenges, achievements, and promises. Angew. Chem. Int. Ed. 2022, 61, e202210753.
77. Xie, H.; Zhao, Z.; Liu, T.; et al. A membrane-based seawater electrolyser for hydrogen generation. Nature 2022, 612, 673-8.
78. Adisasmito, S.; Khoiruddin, K.; Sutrisna, P. D.; Wenten, I. G.; Siagian, U. W. R. Bipolar membrane seawater splitting for hydrogen production: a review. ACS. Omega. 2024, 9, 14704-27.
79. Zheng, Y.; Qiao, S. Direct seawater splitting to hydrogen by a membrane electrolyzer. Joule 2023, 7, 20-2.
80. Jin, H.; Xu, J.; Liu, H.; et al. Emerging materials and technologies for electrocatalytic seawater splitting. Sci. Adv. 2023, 9, eadi7755.
81. Liang, J.; Cai, Z.; He, X.; et al. Electroreduction of alkaline/natural seawater: self-cleaning Pt/carbon cathode and on-site co-synthesis of H2 and Mg hydroxide nanoflakes. Chem 2024, 10, 3067-87.
82. Zhao, L.; Zhou, S.; Lv, Z.; et al. Anti-precipitation molecular metal chalcogenide complexes modification for efficient direct alkaline seawater splitting at the large current density. Appl. Catal. B. Environ. 2023, 338, 122996.
83. Yang, C.; Wu, Z.; Zheng, Y.; et al. Electron-donating Cu atoms induced high proton supply and anti-poisoning ruthenium clusters for superior direct seawater hydrogen production. Adv. Funct. Mater. 2024, 34, 2404061.
84. Liang, J.; Cai, Z.; Li, Z.; et al. Efficient bubble/precipitate traffic enables stable seawater reduction electrocatalysis at industrial-level current densities. Nat. Commun. 2024, 15, 2950.
85. Jwa, E.; Kim, H.; Chon, K.; et al. Bioelectrochemical precipitation system for removal of scale-forming ions from seawater using two different buffers. Desalination 2017, 418, 35-42.
86. Ren, Y.; Fan, F.; Zhang, Y.; et al. A Dual-cation exchange membrane electrolyzer for continuous H2 production from seawater. Adv. Sci. 2024, 11, e2401702.
87. Shi, H.; Wang, T.; Liu, J.; et al. A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis. Nat. Commun. 2023, 14, 3934.
88. Li, T.; Wang, B.; Cao, Y.; et al. Energy-saving hydrogen production by seawater electrolysis coupling tip-enhanced electric field promoted electrocatalytic sulfion oxidation. Nat. Commun. 2024, 15, 6173.
89. Sun, F.; Qin, J.; Wang, Z.; et al. Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nat. Commun. 2021, 12, 4182.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.