REFERENCES

1. Yu, F.; Li, S.; Chen, W.; Wu, T.; Peng, C. Biomass-derived materials for electrochemical energy storage and conversion: overview and perspectives. Energy. Environ. Mater. 2019, 2, 55-67.

2. Yang, C.; Wu, H.; Cai, M.; et al. Valorization of biomass-derived polymers to functional biochar materials for supercapacitor applications via pyrolysis: advances and perspectives. Polymers 2023, 15, 2741.

3. Khedulkar, A. P.; Pandit, B.; Dang, V. D.; Doong, R. A. Agricultural waste to real worth biochar as a sustainable material for supercapacitor. Sci. Total. Environ. 2023, 869, 161441.

4. Srikanth, V. V.; Ramana, G. V.; Kumar, P. S. Perspectives on state-of-the-art carbon nanotube/polyaniline and graphene/polyaniline composites for hybrid supercapacitor electrodes. J. Nanosci. Nanotechnol. 2016, 16, 2418-24.

5. Hao, H.; Tan, R.; Ye, C.; Low, C. T. J. Carbon-coated current collectors in lithium-ion batteries and supercapacitors: materials, manufacture and applications. Carbon. Energy. 2024, 6, e604.

6. Zhang, J.; Liu, W.; Du, M.; et al. Kinetic investigation of the energy storage process in graphene fiber supercapacitors: unraveling mechanisms, fabrications, property manipulation, and wearable applications. Carbon. Energy. 2025, 7, e625.

7. Zhou, J.; Zhu, Z.; Shi, W.; et al. Design strategies and recent advancements of solid-state supercapacitor operating in wide temperature range. Carbon. Energy. 2024, 6, e504.

8. Das, S. K.; Pradhan, L.; Jena, B. K.; Basu, S. Polymer derived honeycomb-like carbon nanostructures for high capacitive supercapacitor application. Carbon 2023, 201, 49-59.

9. Fan, Z. S.; Valentino, K. Y.; Chowdhury, S.; et al. Weak base-modulated synthesis of bundle-like carbon superstructures from metal-organic framework for high-performance supercapacitors. Chem. Eng. J. 2023, 462, 142094.

10. Narayanamoorthi, E.; Gowthaman, N. S. K.; John, S. A.; Elango, K. P. Heteroatom-doped mesoporous carbon derived from covalent organic framework for the potential application of symmetric supercapacitor device. J. Mol. Struct. 2024, 1295, 136659.

11. Xu, Y.; Yang, X.; Li, X.; Gao, Y.; Wang, L.; Lü, W. Flexible zinc-ion hybrid supercapacitor based on Co2+-doped polyaniline/V2O5 electrode. J. Power. Sources. 2024, 623, 235399.

12. Shaikh, N. S.; Kanjanaboos, P.; Lokhande, V. C.; Praserthdam, S.; Lokhande, C. D.; Shaikh, J. S. Engineering of battery type electrodes for high performance lithium ion hybrid supercapacitors. ChemElectroChem 2021, 8, 4686-724.

13. Jiang, H.; Liu, J.; Tang, B.; et al. Regulation mechanism on A bilayer Li2O-rich interface between lithium metal and garnet-type solid electrolytes. Adv. Funct. Mater. 2024, 34, 2306399.

14. Hasan M, Sayantha Aniv S, Mominul Islam M. Carbon nanosheets-based supercapacitor materials: recent advances and prospects. Chem. Rec. 2024, 24, e202300153.

15. Kumar, S.; Saeed, G.; Zhu, L.; Hui, K. N.; Kim, N. H.; Lee, J. H. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem. Eng. J. 2021, 403, 126352.

16. Lang, J.; Zhang, X.; Liu, B.; Wang, R.; Chen, J.; Yan, X. The roles of graphene in advanced Li-ion hybrid supercapacitors. J. Energy. Chem. 2018, 27, 43-56.

17. Pour, G. B.; Ashourifar, H.; Aval, L. F.; Solaymani, S. CNTs-supercapacitors: a review of electrode nanocomposites based on CNTs, graphene, metals, and polymers. Symmetry 2023, 15, 1179.

18. Li, C.; Zheng, C.; Cao, F.; Zhang, Y.; Xia, X. The development trend of graphene derivatives. J. Electron. Mater. 2022, 51, 4107-14.

19. Zhang, T.; Li, C.; Wang, F.; et al. Recent advances in carbon anodes for sodium-ion batteries. Chem. Rec. 2022, 22, e202200083.

20. Shen, S.; Huang, L.; Tong, X.; et al. A powerful one-step puffing carbonization method for construction of versatile carbon composites with high-efficiency energy storage. Adv. Mater. 2021, 33, e2102796.

21. Shen, S.; Chen, Y.; Zhou, J.; et al. Microbe-mediated biosynthesis of multidimensional carbon-based materials for energy storage applications. Adv. Energy. Mater. 2023, 13, 2204259.

22. Shen, S.; Chen, Y.; Gu, X.; et al. Juice vesicles bioreactors technology for constructing advanced carbon-based energy storage. Adv. Mater. 2024, 36, e2400245.

23. Ajin, I.; Chandra, B. A. Effects of potassium-based activating agents on the biochar derived from coconut tree husk for enhancing the surface area and supercapacitor performance. Energy. Fuels. 2024, 38, 11240-52.

24. Choudhary, N.; Singh, S.; Malik, G.; et al. Chemically tuned cellulose nanocrystals/single wall carbon nanosheet based electrodes for hybrid supercapacitors. Sustain. Energy. Fuels. 2024, 8, 3595-609.

25. Samage, A.; Halakarni, M.; Yoon, H.; Sanna, K. N. Sustainable conversion of agricultural biomass waste into electrode materials with enhanced energy density for aqueous zinc-ion hybrid capacitors. Carbon 2024, 219, 118774.

26. Huang, L.; Shen, S.; Zhong, Y.; et al. Multifunctional hyphae carbon powering lithium-sulfur batteries. Adv. Mater. 2022, 34, e2107415.

27. Qiu, Z.; Cao, F.; Pan, G.; et al. Carbon materials for metal-ion batteries. ChemPhysMater 2023, 2, 267-81.

28. Huang, L.; Qiu, Z.; Liu, P.; et al. Hyphae-mediated bioassembly of carbon fibers derivatives for advanced battery energy storage. Carbon. Energy. 2024, 6, e470.

29. Ghosh, S.; Santhosh, R.; Jeniffer, S.; et al. Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes. Sci. Rep. 2019, 9, 16315.

30. Lin, G.; Ma, R.; Zhou, Y.; Liu, Q.; Dong, X.; Wang, J. KOH activation of biomass-derived nitrogen-doped carbons for supercapacitor and electrocatalytic oxygen reduction. Electrochim. Acta. 2018, 261, 49-57.

31. Jung, S.; Myung, Y.; Kim, B. N.; Kim, I. G.; You, I. K.; Kim, T. Activated biomass-derived graphene-based carbons for supercapacitors with high energy and power density. Sci. Rep. 2018, 8, 1915.

32. Song, Y.; Qu, W.; He, Y.; et al. Synthesis and processing optimization of N-doped hierarchical porous carbon derived from corncob for high performance supercapacitors. J. Energy. Storage. 2020, 32, 101877.

33. Wang, H.; Wang, M.; Zhang, J.; Wang, N.; Wang, J.; Yang, J. Preparation of fly ash-based cobalt-iron silicate as supercapacitor electrode material. Chem. Eng. J. 2022, 434, 134661.

34. Mushtaq, F.; Wang, L.; Tu, H.; et al. Status of fly ash-derived sustainable nanomaterials for batteries and supercapacitors. Sustain. Energy. Fuels. 2024, 8, 2798-823.

35. Du, Z.; Li, L.; Shen, G. Proton-conducting hydrogel electrolytes with tight contact to binder-free MXene electrodes for high-performance thermally chargeable supercapacitor. Carbon. Energy. 2024, 6, e562.

36. Ruan, S.; Xin, W.; Wang, C.; et al. An approach to enhance carbon/polymer interface compatibility for lithium-ion supercapacitors. J. Colloid. Interface. Sci. 2023, 652, 1063-73.

37. Ruan, S.; Shi, M.; Huang, H.; et al. An innovative design of integrative polyaniline/carbon foam flexible electrode material with improved electrochemical performance. Mater. Today. Chem. 2023, 29, 101435.

38. Huang, L.; Guan, T.; Su, H.; et al. Synergistic interfacial bonding in reduced graphene oxide fiber cathodes containing polypyrrole@sulfur nanospheres for flexible energy storage. Angew. Chem. Int. Ed. 2022, 61, e202212151.

39. Huang, B. L.; Zhang, H.; Qiu, Z.; et al. Hyphae carbon coupled with gel composite assembly for construction of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Small 2024, 20, e2307579.

40. He, X.; Zhuang, T.; Ruan, S.; et al. An innovative poly(ionic liquid) hydrogel-based anti-freezing electrolyte with high conductivity for supercapacitor. Chem. Eng. J. 2023, 466, 143209.

41. He, X.; Li, W.; Xia, Y.; et al. Pivotal factors of wood-derived electrode for supercapacitor: Component striping, specific surface area and functional group at surface. Carbon 2023, 210, 118090.

42. Chen, H.; Ericson, T.; Temperton, R. H.; et al. Investigating surface reactivity of a Ni-rich cathode material toward CO2, H2O, and O2 using ambient pressure X-ray photoelectron spectroscopy. ACS. Appl. Energy. Mater. 2023, 6, 11458-67.

43. Bagus, P. S.; Nelin, C. J.; Brundle, C. R. Chemical significance of X-ray photoelectron spectroscopy binding energy shifts: a Perspective. J. Vac. Sci. Technol. A. 2023, 41, 068501.

44. Altendorf, S. G.; Takegami, D.; Meléndez-Sans, A.; et al. Electronic structure of the Fe2+ compound FeWO4: a combined experimental and theoretical X-ray photoelectron spectroscopy study. Phys. Rev. B. 2023, 108, 085119.

45. Gautam, A.; Singh, R. S.; Gautam, P.; Hussain, S. M.; Reddy, V. S. X-ray photoelectron spectroscopy and tunable photoluminescence study of gold nanoparticles embedded in PVA films. Luminescence 2024, 39, e4607.

46. Aditya, D. S.; Mahadevaprasad, K. N.; Santhosh, K. N.; et al. Sustainable and eco-friendly membranes from sugarcane bagasse: an upcycling approach for wastewater treatment and energy storage. Chem. Eng. J. 2024, 488, 150910.

47. Kavre Piltaver, I.; Peter, R.; Salamon, K.; Micetic, M.; Petravic, M. In situ X-ray photoelectron spectroscopy study of initial stages of tungsten trioxide reduction by low-energy hydrogen bombardment. J. Phys. Chem. C. 2024, 128, 5345-54.

48. Nandi, P.; Park, H.; Shin, S.; et al. NiO as hole transporting layer for inverted perovskite solar cells: a study of X-ray photoelectron spectroscopy. Adv. Mater. Inter. 2024, 11, 2300751.

49. Moeini, B.; Gallagher, N.; Linford, M. R. Surface analysis insight note: multivariate curve resolution of an X-ray photoelectron spectroscopy image. Surf. Interface. Anal. 2023, 55, 853-8.

50. Zubkov, T.; Smith, R. S.; Engstrom, T. R.; Kay, B. D. Adsorption, desorption, and diffusion of nitrogen in a model nanoporous material. II. Diffusion limited kinetics in amorphous solid water. J. Chem. Phys. 2007, 127, 184708.

51. Zelenka, T. Adsorption and desorption of nitrogen at 77 K on micro- and meso- porous materials: study of transport kinetics. Microporous. Mesoporous. Mater. 2016, 227, 202-9.

52. Blacher, S.; Alié, C.; Gommes, C.; Lodewyckx, P.; Pirard, R.; Pirard, J. P. Characterisation of silica low-density xerogels in presence of additives by image analysis and nitrogen adsorption-desorption. Stud. Surf. Sci. Catal. 2002, 144, 323-30.

53. Baldovino-Medrano, V. G.; Niño-Celis, V.; Isaacs Giraldo, R. Systematic analysis of the nitrogen adsorption-desorption isotherms recorded for a series of materials based on microporous-mesoporous amorphous aluminosilicates using classical methods. J. Chem. Eng. Data. 2023, 68, 2512-28.

54. Dong, S.; Zhao, D.; Li, L.; Li, X.; Chen, T. Study on pore evolution characteristics of gas adsorption and desorption in coal under the action of liquid nitrogen. Geosci. J. 2023, 27, 101-12.

55. Dias, A.; Ciminelli, V. S. T. Analysis of nitrogen adsorption-desorption isotherms for the estimation of pore-network dimensions and structure of ferroelectric powders. Ferroelectrics 2000, 241, 9-16.

56. Liao, Y.; Shang, Z.; Ju, G.; et al. Biomass derived N-doped porous carbon made from reed straw for an enhanced supercapacitor. Molecules 2023, 28, 4633.

57. Hu, Z.; Li, X.; Tu, Z.; et al. “Thermal dissolution carbon enrichment” treatment of biomass wastes: supercapacitor electrode preparation using the residue. Fuel. Proc. Technol. 2020, 205, 106430.

58. Wang, J.; Zhang, C.; Chen, Z.; et al. An environment-friendly method to prepare fulvic acid-based porous carbon for high energy density supercapacitors. Diam. Relat. Mater. 2024, 149, 111587.

59. Li, H.; Cao, L.; Wang, F.; et al. Fatsia japonica-derived hierarchical porous carbon for supercapacitors with high energy density and long cycle life. Front. Chem. 2020, 8, 89.

60. Sun, Y.; Li, X.; Sun, J.; Ren, Z. Molten salt-mediated hierarchical porous carbon derived from biomass waste for high-performance capacitive storage. J. Power. Sources. 2024, 618, 235216.

61. Meng, X.; Zhang, D.; Wang, B.; et al. Biomass-derived phosphorus-doped hierarchical porous carbon fabricated by microwave irritation under ambient atmosphere with high supercapacitance performance in trifluoroacetic acid electrolyte. J. Energy. Storage. 2023, 57, 106345.

62. Xia, C.; Surendran, S.; Ji, S.; et al. A sulfur self-doped multifunctional biochar catalyst for overall water splitting and a supercapacitor from Camellia japonica flowers. Carbon. Energy. 2022, 4, 491-505.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/