1. Gopalakrishnan, J. Chimie douce approaches to the synthesis of metastable oxide materials. Chem. Mater. 1995, 7, 1265-75.
2. Stein, A.; Keller, S. W.; Mallouk, T. E. Turning down the heat: design and mechanism in solid-state synthesis. Science 1993, 259, 1558-64.
3. Manthiram, A.; Kim, J. Low Temperature synthesis of insertion oxides for lithium batteries. Chem. Mater. 1998, 10, 2895-909.
4. Elfimov, I. S.; Anisimov, V. I.; Sawatzky, G. A. Orbital ordering, Jahn-Teller distortion, and anomalous X-Ray scattering in manganates. Phys. Rev. Lett. 1999, 82, 4264-7.
5. Kim, Y. M.; He, J.; Biegalski, M. D.; et al. Probing oxygen vacancy concentration and homogeneity in solid-oxide fuel-cell cathode materials on the subunit-cell level. Nat. Mater. 2012, 11, 888-94.
6. Hao, X.; Lin, X.; Lu, W.; Bartlett, B. M. Oxygen vacancies lead to loss of domain order, particle fracture, and rapid capacity fade in lithium manganospinel (LiMn2O4) batteries. ACS. Appl. Mater. Interfaces. 2014, 6, 10849-57.
7. Alonso, J. A.; Martínez-Lope, M. J.; Casais, M. T.; Fernández-Dáz, M. T. Evolution of the Jahn-Teller distortion of MnO6 octahedra in RMnO3 perovskites (R = Pr, Nd, Dy, Tb, Ho, Er, Y): a neutron diffraction study. Inorg. Chem. 2000, 39, 917-23.
8. Lufaso, M. W.; Woodward, P. M. Jahn-Teller distortions, cation ordering and octahedral tilting in perovskites. Acta. Crystallogr. B. 2004, 60, 10-20.
9. Lutz, H. D.; Becker, W.; Müller, B.; Jung, M. Raman single crystal studies of spinel type MCr2S4(M=Mn, Fe, Co, Zn, Cd), MIn2S4(M=Mn, Fe, Co, Ni), MnCr2-2-xIn2xS4 and Co1-xCdxCr2S4†. J. Raman. Spectroscopy. 1989, 20, 99-103.
10. Lutz, H.; Müller, B.; Steiner, H. Lattice vibration spectra. LIX. Single crystal infrared and Raman studies of spinel type oxides. J. Solid. State. Chem. 1991, 90, 54-60.
11. Sun, J. Z.; Gallagher, W. J.; Duncombe, P. R.; et al. Observation of large low-field magnetoresistance in trilayer perpendicular transport devices made using doped manganate perovskites. Appl. Phys. Lett. 1996, 69, 3266-8.
12. Bi, Z.; Guo, X. Solidification for solid-state lithium batteries with high energy density and long cycle life. Energy. Mater. 2022, 2, 200011.
13. Lu, J.; Zhan, C.; Wu, T.; et al. Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach. Nat. Commun. 2014, 5, 5693.
14. Heng, Y.; Gu, Z.; Guo, J.; Yang, X.; Zhao, X.; Wu, X. Research progress on the surface/interface modification of high-voltage lithium oxide cathode materials. Energy. Mater. 2022, 2.
15. Komaba, S. Hydrothermal synthesis of high crystalline orthorhombic LiMnO2 as a cathode material for Li-ion batteries. Solid. State. Ionics. 2002, 152-153, 311-8.
16. Thackeray, M. M. Manganese oxides for lithium batteries. Prog. Solid. State. Chem. 1997, 25, 1-71.
17. Freire, M.; Kosova, N. V.; Jordy, C.; et al. A new active Li-Mn-O compound for high energy density Li-ion batteries. Nat. Mater. 2016, 15, 173-7.
18. Ammundsen, B.; Paulsen, J. Novel lithium-ion cathode materials based on layered manganese oxides. Adv. Mater. 2001, 13, 943-56.
19. Yao, Z.; Kim, S.; He, J.; Hegde, V. I.; Wolverton, C. Interplay of cation and anion redox in Li4Mn2O5 cathode material and prediction of improved Li4(Mn,M)2O5 electrodes for Li-ion batteries. Sci. Adv. 2018, 4, eaao6754.
20. Chitrakar, R.; Kanoh, H.; Miyai, Y.; Ooi, K. A new type of manganese oxide (MnO2·0.5H2O) derived from Li1.6Mn1.6O4 and its lithium ion-sieve properties. Chem. Mater. 2000, 12, 3151-7.
22. Sun, S.; Xiao, J.; Wang, J.; Song, X.; Yu, J. Synthesis and adsorption properties of Li1.6Mn1.6O4 by a combination of redox precipitation and solid-phase reaction. Ind. Eng. Chem. Res. 2014, 53, 15517-21.
23. Han, H.; Wei, Z.; Barry, M. C.; Filatov, A. S.; Dikarev, E. V. Heterometallic molecular precursors for a lithium-iron oxide material: synthesis, solid state structure, solution and gas-phase behaviour, and thermal decomposition. Dalton. Trans. 2017, 46, 5644-9.
24. Han, H.; Zhou, Z.; Carozza, J. C.; et al. From lithium to sodium: design of heterometallic molecular precursors for the NaMO2 cathode materials†. Chem. Commun. 2019, 55, 7243-6.
25. Han, H.; Wei, Z.; Barry, M. C.; et al. A three body problem: a genuine heterotrimetallic molecule vs. a mixture of two parent heterobimetallic molecules. Chem. Sci. 2018, 9, 4736-45.
26. Wei, Z.; Han, H.; Filatov, A. S.; Dikarev, E. V. Changing the bridging connectivity pattern within a heterometallic assembly: design of single-source precursors with discrete molecular structures. Chem. Sci. 2014, 5, 813-8.
27. Gross, J. H. Direct analysis in real time-a critical review on DART-MS. Anal. Bioanal. Chem. 2014, 406, 63-80.
28. Hosono, E.; Kudo, T.; Honma, I.; Matsuda, H.; Zhou, H. Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano. Lett. 2009, 9, 1045-51.
29. Takada, T.; Hayakawa, H.; Akiba, E. Preparation and crystal structure refinement of Li4Mn5O12 by the rietveld method. J. Solid. State. Chem. 1995, 115, 420-6.
30. Kawai, H.; Nagata, M.; Kageyama, H.; Tukamoto, H.; West, A. R. 5 V lithium cathodes based on spinel solid solutions Li2Co1+XMn3-XO8: -1≤X≤1. Electrochim. Acta. 1999, 45, 315-27.
31. Takada, T.; Akiba, E.; Izumi, F.; Chakoumakos, B. C. Structure refinement of Li4Mn5O12with neutron and X-Ray powder diffraction data. J. Solid. State. Chem. 1997, 130, 74-80.
32. Boulineau, A.; Croguennec, L.; Delmas, C.; Weill, F. Thermal stability of Li2MnO3: from localized defects to the spinel phase. Dalton. Trans. 2012, 41, 1574-81.
33. Riou, A.; Lecerf, A.; Gerault, Y.; Cudennec, Y. Etude structurale de Li2MnO3. Mater. Res. Bull. 1992, 27, 269-75.
34. Berg, H. Neutron diffraction study of electrochemically delithiated LiMn2O4 spinel. Solid. State. Ionics. 1999, 126, 227-34.
35. Pei, Y.; Chen, Q.; Xiao, Y.; et al. Understanding the phase transitions in spinel-layered-rock salt system: criterion for the rational design of LLO/spinel nanocomposites. Nano. Energy. 2017, 40, 566-75.
36. Takada, T.; Hayakawa, H.; Akiba, E.; Izumi, F.; Chakoumakos, B. C. Novel synthesis process and structure refinements of Li4Mn5O12 for rechargeable lithium batteries. J. Power. Sources. 1997, 68, 613-7.
37. Croguennec, L. Electrochemical behavior of orthorhombic LiMnO2: influence of the grain size and cationic disorder. Solid. State. Ionics. 1996, 89, 127-37.
38. Lieberman, C. M.; Filatov, A. S.; Wei, Z.; Rogachev, A. Y.; Abakumov, A. M.; Dikarev, E. V. Mixed-valent, heteroleptic homometallic diketonates as templates for the design of volatile heterometallic precursors. Chem. Sci. 2015, 6, 2835-42.
39. Zhang, H.; Yang, J. H.; Shpanchenko, R. V.; et al. New class of single-source precursors for the synthesis of main group-transition metal oxides: heterobimetallic Pb-Mn β-diketonates. Inorg. Chem. 2009, 48, 8480-8.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.