REFERENCES
1. Gopalakrishnan, J. Chimie douce approaches to the synthesis of metastable oxide materials. Chem. Mater. 1995, 7, 1265-75.
2. Stein, A.; Keller, S. W.; Mallouk, T. E. Turning down the heat: design and mechanism in solid-state synthesis. Science 1993, 259, 1558-64.
3. Manthiram, A.; Kim, J. Low Temperature synthesis of insertion oxides for lithium batteries. Chem. Mater. 1998, 10, 2895-909.
4. Elfimov, I. S.; Anisimov, V. I.; Sawatzky, G. A. Orbital ordering, Jahn-Teller distortion, and anomalous X-Ray scattering in manganates. Phys. Rev. Lett. 1999, 82, 4264-7.
5. Kim, Y. M.; He, J.; Biegalski, M. D.; et al. Probing oxygen vacancy concentration and homogeneity in solid-oxide fuel-cell cathode materials on the subunit-cell level. Nat. Mater. 2012, 11, 888-94.
6. Hao, X.; Lin, X.; Lu, W.; Bartlett, B. M. Oxygen vacancies lead to loss of domain order, particle fracture, and rapid capacity fade in lithium manganospinel (LiMn2O4) batteries. ACS. Appl. Mater. Interfaces. 2014, 6, 10849-57.
7. Alonso, J. A.; Martínez-Lope, M. J.; Casais, M. T.; Fernández-Dáz, M. T. Evolution of the Jahn-Teller distortion of MnO6 octahedra in RMnO3 perovskites (R = Pr, Nd, Dy, Tb, Ho, Er, Y): a neutron diffraction study. Inorg. Chem. 2000, 39, 917-23.
8. Lufaso, M. W.; Woodward, P. M. Jahn-Teller distortions, cation ordering and octahedral tilting in perovskites. Acta. Crystallogr. B. 2004, 60, 10-20.
9. Lutz, H. D.; Becker, W.; Müller, B.; Jung, M. Raman single crystal studies of spinel type MCr2S4(M=Mn, Fe, Co, Zn, Cd), MIn2S4(M=Mn, Fe, Co, Ni), MnCr2-2-xIn2xS4 and Co1-xCdxCr2S4†. J. Raman. Spectroscopy. 1989, 20, 99-103.
10. Lutz, H.; Müller, B.; Steiner, H. Lattice vibration spectra. LIX. Single crystal infrared and Raman studies of spinel type oxides. J. Solid. State. Chem. 1991, 90, 54-60.
11. Sun, J. Z.; Gallagher, W. J.; Duncombe, P. R.; et al. Observation of large low-field magnetoresistance in trilayer perpendicular transport devices made using doped manganate perovskites. Appl. Phys. Lett. 1996, 69, 3266-8.
12. Bi, Z.; Guo, X. Solidification for solid-state lithium batteries with high energy density and long cycle life. Energy. Mater. 2022, 2, 200011.
13. Lu, J.; Zhan, C.; Wu, T.; et al. Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach. Nat. Commun. 2014, 5, 5693.
14. Heng, Y.; Gu, Z.; Guo, J.; Yang, X.; Zhao, X.; Wu, X. Research progress on the surface/interface modification of high-voltage lithium oxide cathode materials. Energy. Mater. 2022, 2.
15. Komaba, S. Hydrothermal synthesis of high crystalline orthorhombic LiMnO2 as a cathode material for Li-ion batteries. Solid. State. Ionics. 2002, 152-153, 311-8.
16. Thackeray, M. M. Manganese oxides for lithium batteries. Prog. Solid. State. Chem. 1997, 25, 1-71.
17. Freire, M.; Kosova, N. V.; Jordy, C.; et al. A new active Li-Mn-O compound for high energy density Li-ion batteries. Nat. Mater. 2016, 15, 173-7.
18. Ammundsen, B.; Paulsen, J. Novel lithium-ion cathode materials based on layered manganese oxides. Adv. Mater. 2001, 13, 943-56.
19. Yao, Z.; Kim, S.; He, J.; Hegde, V. I.; Wolverton, C. Interplay of cation and anion redox in Li4Mn2O5 cathode material and prediction of improved Li4(Mn,M)2O5 electrodes for Li-ion batteries. Sci. Adv. 2018, 4, eaao6754.
20. Chitrakar, R.; Kanoh, H.; Miyai, Y.; Ooi, K. A new type of manganese oxide (MnO2·0.5H2O) derived from Li1.6Mn1.6O4 and its lithium ion-sieve properties. Chem. Mater. 2000, 12, 3151-7.
22. Sun, S.; Xiao, J.; Wang, J.; Song, X.; Yu, J. Synthesis and adsorption properties of Li1.6Mn1.6O4 by a combination of redox precipitation and solid-phase reaction. Ind. Eng. Chem. Res. 2014, 53, 15517-21.
23. Han, H.; Wei, Z.; Barry, M. C.; Filatov, A. S.; Dikarev, E. V. Heterometallic molecular precursors for a lithium-iron oxide material: synthesis, solid state structure, solution and gas-phase behaviour, and thermal decomposition. Dalton. Trans. 2017, 46, 5644-9.
24. Han, H.; Zhou, Z.; Carozza, J. C.; et al. From lithium to sodium: design of heterometallic molecular precursors for the NaMO2 cathode materials†. Chem. Commun. 2019, 55, 7243-6.
25. Han, H.; Wei, Z.; Barry, M. C.; et al. A three body problem: a genuine heterotrimetallic molecule vs. a mixture of two parent heterobimetallic molecules. Chem. Sci. 2018, 9, 4736-45.
26. Wei, Z.; Han, H.; Filatov, A. S.; Dikarev, E. V. Changing the bridging connectivity pattern within a heterometallic assembly: design of single-source precursors with discrete molecular structures. Chem. Sci. 2014, 5, 813-8.
27. Gross, J. H. Direct analysis in real time-a critical review on DART-MS. Anal. Bioanal. Chem. 2014, 406, 63-80.
28. Hosono, E.; Kudo, T.; Honma, I.; Matsuda, H.; Zhou, H. Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano. Lett. 2009, 9, 1045-51.
29. Takada, T.; Hayakawa, H.; Akiba, E. Preparation and crystal structure refinement of Li4Mn5O12 by the rietveld method. J. Solid. State. Chem. 1995, 115, 420-6.
30. Kawai, H.; Nagata, M.; Kageyama, H.; Tukamoto, H.; West, A. R. 5 V lithium cathodes based on spinel solid solutions Li2Co1+XMn3-XO8: -1≤X≤1. Electrochim. Acta. 1999, 45, 315-27.
31. Takada, T.; Akiba, E.; Izumi, F.; Chakoumakos, B. C. Structure refinement of Li4Mn5O12with neutron and X-Ray powder diffraction data. J. Solid. State. Chem. 1997, 130, 74-80.
32. Boulineau, A.; Croguennec, L.; Delmas, C.; Weill, F. Thermal stability of Li2MnO3: from localized defects to the spinel phase. Dalton. Trans. 2012, 41, 1574-81.
33. Riou, A.; Lecerf, A.; Gerault, Y.; Cudennec, Y. Etude structurale de Li2MnO3. Mater. Res. Bull. 1992, 27, 269-75.
34. Berg, H. Neutron diffraction study of electrochemically delithiated LiMn2O4 spinel. Solid. State. Ionics. 1999, 126, 227-34.
35. Pei, Y.; Chen, Q.; Xiao, Y.; et al. Understanding the phase transitions in spinel-layered-rock salt system: criterion for the rational design of LLO/spinel nanocomposites. Nano. Energy. 2017, 40, 566-75.
36. Takada, T.; Hayakawa, H.; Akiba, E.; Izumi, F.; Chakoumakos, B. C. Novel synthesis process and structure refinements of Li4Mn5O12 for rechargeable lithium batteries. J. Power. Sources. 1997, 68, 613-7.
37. Croguennec, L. Electrochemical behavior of orthorhombic LiMnO2: influence of the grain size and cationic disorder. Solid. State. Ionics. 1996, 89, 127-37.
38. Lieberman, C. M.; Filatov, A. S.; Wei, Z.; Rogachev, A. Y.; Abakumov, A. M.; Dikarev, E. V. Mixed-valent, heteroleptic homometallic diketonates as templates for the design of volatile heterometallic precursors. Chem. Sci. 2015, 6, 2835-42.