REFERENCES
1. Jaziri, N.; Boughamoura, A.; Müller, J.; Mezghani, B.; Tounsi, F.; Ismail, M. A comprehensive review of Thermoelectric Generators: technologies and common applications. Energy. Rep. 2020, 6, 264-87.
2. Bisht, N.; More, P.; Khanna, P. K.; Abolhassani, R.; Mishra, Y. K.; Madsen, M. Progress of hybrid nanocomposite materials for thermoelectric applications. Mater. Adv. 2021, 2, 1927-56.
3. Hamawandi, B.; Batili, H.; Paul, M.; et al. Minute-made, high-efficiency nanostructured Bi2Te3 via high-throughput green solution chemical synthesis. Nanomaterials 2021, 11, 2053.
4. Yang, J.; Cai, J.; Wang, R.; et al. Entropy engineering realized ultralow thermal conductivity and high seebeck coefficient in lead-free SnTe. ACS. Appl. Energy. Mater. 2021, 4, 12738-44.
5. Zhang, D.; Lim, W. Y. S.; Duran, S. S. F.; Loh, X. J.; Suwardi, A. Additive manufacturing of thermoelectrics: emerging trends and outlook. ACS. Energy. Lett. 2022, 7, 720-35.
6. Channegowda, M.; Mulla, R.; Nagaraj, Y.; et al. Comprehensive insights into synthesis, structural features, and thermoelectric properties of high-performance inorganic chalcogenide nanomaterials for conversion of waste heat to electricity. ACS. Appl. Energy. Mater. 2022, 5, 7913-43.
7. Tippireddy, S.; Kumar D S, P.; Das, S.; Mallik, R. C. Oxychalcogenides as thermoelectric materials: an overview. ACS. Appl. Energy. Mater. 2021, 4, 2022-40.
8. Hamawandi, B.; Ballikaya, S.; Råsander, M.; et al. Composition tuning of nanostructured binary copper selenides through rapid chemical synthesis and their thermoelectric property evaluation. Nanomaterials 2020, 10, 854.
9. Zoui, M. A.; Bentouba, S.; Stocholm, J. G.; Bourouis, M. A review on thermoelectric generators: progress and applications. Energies 2020, 13, 3606.
10. Jaldurgam, F. F.; Ahmad, Z.; Touati, F. Synthesis and performance of large-scale cost-effective environment-friendly nanostructured thermoelectric materials. Nanomaterials 2021, 11, 1091.
11. Gite, A. B.; Palve, B. M.; Gaikwad, V. B.; et al. A facile chemical synthesis of PbTe nanostructures at room temperature. Nanomaterials 2020, 10, 1915.
12. Shi, X. L.; Zou, J.; Chen, Z. G. Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 2020, 120, 7399-515.
13. Recatala-Gomez, J.; Suwardi, A.; Nandhakumar, I.; Abutaha, A.; Hippalgaonkar, K. Toward accelerated thermoelectric materials and process discovery. ACS. Appl. Energy. Mater. 2020, 3, 2240-57.
14. Murmu, P. P.; Karthik, V.; Liu, Z.; et al. Influence of carrier density and energy barrier scattering on a high seebeck coefficient and power factor in transparent thermoelectric copper iodide. ACS. Appl. Energy. Mater. 2020, 3, 10037-44.
15. Wang, Y.; Bourgès, C.; Rajamathi, R.; Nethravathi, C.; Rajamathi, M.; Mori, T. The effect of reactive electric field-assisted sintering of MoS2/ Bi2Te3 heterostructure on the phase integrity of Bi2Te3 matrix and the thermoelectric properties. Materials 2021, 15, 53.
16. Sato, H. K.; Tamaki, H.; Kanno, T. Large valley degeneracy and high thermoelectric performance in p-type Ba8Cu6Ge40-based clathrates. Appl. Phys. Lett. 2020, 116, 253901.
17. Tarachand; Saxena, M.; Okram, G.; et al. Enhanced thermoelectric performance of solution-grown Bi2Te3 nanorods. Mater. Today. Energy. 2021, 21, 100700.
18. Shi, Z.; Tong, S.; Wei, J.; et al. Regulating multiscale defects to enhance the thermoelectric performance of Ca0.87Ag0.1Dy0.03MnO3 ceramics. ACS. Appl. Mater. Interfaces. 2022, 14, 32166-75.
19. Li, S.; Jiang, J.; Ma, Z.; et al. Rare earth element doping introduces pores to improve thermoelectric properties of p-type
20. Zhuang, H.; Pei, J.; Cai, B.; et al. Thermoelectric performance enhancement in BiSbTe alloy by microstructure modulation via cyclic spark plasma sintering with liquid phase. Adv. Funct. Mater. 2021, 31, 2009681.
21. Li, S.; Huang, Z.; Wang, R.; et al. Precision grain boundary engineering in commercial Bi2Te2.7Se0.3 thermoelectric materials towards high performance. J. Mater. Chem. A. 2021, 9, 11442-9.
22. Jo, S.; Park, S. H.; Shin, H.; et al. Soluble telluride-based molecular precursor for solution-processed high-performance thermoelectrics. ACS. Appl. Energy. Mater. 2019, 2, 4582-9.
23. Irfan, S.; Din, M. A. U.; Manzoor, M. Q.; Chen, D. Effect of co-doping on thermoelectric properties of n-type Bi2Te3 nanostructures fabricated using a low-temperature sol-gel method. Nanomaterials 2021, 11, 2719.
24. Bu, Z.; Zhang, X.; Hu, Y.; et al. A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery. Nat. Commun. 2022, 13, 237.
25. Wiese, J.; Muldawer, L. Lattice constants of Bi2Te3-Bi2Se3 solid solution alloys. J. Phys. Chem. Solids. 1960, 15, 13-6.
26. Zhai, R.; Wu, Y.; Zhu, T.; Zhao, X. Tunable optimum temperature range of high-performance zone melted bismuth-telluride-based solid solutions. Cryst. Growth. Des. 2018, 18, 4646-52.
27. Hamawandi, B.; Mansouri, H.; Ballikaya, S.; et al. A comparative study on the thermoelectric properties of bismuth chalcogenide alloys synthesized through mechanochemical alloying and microwave-assisted solution synthesis routes. Front. Mater. 2020, 7, 569723.
28. Winkler, M.; Liu, X.; König, J. D.; et al. Electrical and structural properties of Bi2Te3 and Sb2Te3 thin films grown by the nanoalloying method with different deposition patterns and compositions. J. Mater. Chem. 2012, 22, 11323.
29. Feng, H.; Wu, C.; Zhang, P.; Mi, J.; Dong, M. Facile hydrothermal synthesis and formation mechanisms of Bi2Te3, Sb2Te3 and Bi2Te3-Sb2Te3 nanowires. RSC. Adv. 2015, 5, 100309-15.
30. Ammar, S.; Fiévet, F. Polyol synthesis: a versatile wet-chemistry route for the design and production of functional inorganic nanoparticles. Nanomaterials 2020, 10, 1217.
31. Batili, H.; Hamawandi, B.; Björn, E. A.; Szukiewicz, R.; Kuchowicz, M.; Toprak, M. S. A comparative study on the surface chemistry and electronic transport properties of Bi2Te3 synthesized through hydrothermal and thermolysis routes. Colloids. Surf. A. Physicochem. Eng. Asp. 2024, 682, 132898.
32. Serrano-Claumarchirant, J. F.; Hamawandi, B.; Ergül, A. B.; et al. Thermoelectric inks and power factor tunability in hybrid films through all solution process. ACS. Appl. Mater. Interfaces. 2022, 14, 19295-303.
33. Ha, H. P.; Oh, Y. J.; Hyun, D. B.; Yoon, E. P. Thermoelectric properties of n-type bismuth telluride based alloys prepared by hot pressing and zone melting method. Int. J. Soc. Mater. Eng. Resour. 2002, 10, 130-4.
34. Batili, H.; Hamawandi, B.; Ergül, A. B.; Toprak, M. S. On the electrophoretic deposition of Bi2Te3 nanoparticles through electrolyte optimization and substrate design. Colloids. Surf. A. Physicochem. Eng. Asp. 2022, 649, 129537.
35. Batili, H.; Hamawandi, B.; Parsa, P.; et al. Electrophoretic assembly and electronic transport properties of rapidly synthesized Sb2Te3 nanoparticles. Appl. Surf. Sci. 2023, 637, 157930.
36. Dong, G.; Zhu, Y.; Chen, L. Microwave-assisted rapid synthesis of Sb2Te3 nanosheets and thermoelectric properties of bulk samples prepared by spark plasma sintering. J. Mater. Chem. 2010, 20, 1976.
37. Welter, E.; Chernikov, R.; Herrmann, M.; Nemausat, R. A beamline for bulk sample X-ray absorption spectroscopy at the high brilliance storage ring PETRA III. AIP. Conf. Proc. 2019, 2054, 040002.
38. Kumar, A.; Misra, D. K.; Bano, S.; Govind, B.; Bhatt, K. A review on sources of uncertainty in thermal conductivity measurement for thermal transport metrology. In: Yadav S, Chaudhary K, Gahlot A, Arya Y, Dahiya A, Garg N, editors. Recent advances in metrology. Singapore: Springer Nature; 2023. pp. 137-45.
39. Kuznetsov, G. V.; Kats, M. D. The errors when determining thermal characteristics by the laser flash method due to the thickness of the sample and the duration of the heating pulse. Meas. Tech. 2012, 55, 454-8.
40. Kalinko, A. xaesa. Available from: https://gitlab.desy.de/aleksandr.kalinko/xaesa [Last accessed on 5 Feb 2025].
41. Kuzmin, A.; Chaboy, J. EXAFS and XANES analysis of oxides at the nanoscale. IUCrJ 2014, 1, 571-89.
42. Timoshenko, J.; Kuzmin, A.; Purans, J. Reverse Monte Carlo modeling of thermal disorder in crystalline materials from EXAFS spectra. Comput. Phys. Commun. 2012, 183, 1237-45.
43. Timoshenko, J.; Kuzmin, A.; Purans, J. EXAFS study of hydrogen intercalation into ReO3 using the evolutionary algorithm. J. Phys. Condens. Matter. 2014, 26, 055401.
44. Mansour, A. N.; Wong-Ng, W.; Huang, Q.; Tang, W.; Thompson, A.; Sharp, J. Structural characterization of Bi2Te3 and Sb2Te3 as a function of temperature using neutron powder diffraction and extended X-ray absorption fine structure techniques. J. Appl. Phys. 2014, 116, 083513.
45. Ankudinov, A. L.; Ravel, B.; Rehr, J. J.; Conradson, S. D. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys. Rev. B. 1998, 58, 7565-76.
46. Rehr, J. J.; Albers, R. C. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 2000, 72, 621-54.
47. Hedin, L.; Lundqvist, B. I. Explicit local exchange-correlation potentials. J. Phys. C. Solid. State. Phys. 1971, 4, 2064-83.
48. Timoshenko, J.; Kuzmin, A. Wavelet data analysis of EXAFS spectra. Comput. Phys. Commun. 2009, 180, 920-5.
49. Hamawandi, B.; Ballikaya, S.; Batili, H.; et al. Facile solution synthesis, processing and characterization of n- and p-type binary and ternary Bi-Sb tellurides. Appl. Sci. 2020, 10, 1178.
50. Jonane, I.; Anspoks, A.; Kuzmin, A. Advanced approach to the local structure reconstruction and theory validation on the example of the W L3-edge extended X-ray absorption fine structure of tungsten. Model. Simul. Mater. Sci. Eng. 2018, 26, 025004.
51. Jonane, I.; Anspoks, A.; Aquilanti, G.; Kuzmin, A. High-temperature X-ray absorption spectroscopy study of thermochromic copper molybdate. Acta. Mater. 2019, 179, 26-35.
52. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Cryst. A. 1976, 32, 751-67.
53. Eivari, H.; Sohbatzadeh, Z.; Mele, P.; Assadi, M. Low thermal conductivity: fundamentals and theoretical aspects in thermoelectric applications. Mater. Today. Energy. 2021, 21, 100744.
54. Parashchuk, T.; Knura, R.; Cherniushok, O.; Wojciechowski, K. T. Ultralow lattice thermal conductivity and improved thermoelectric performance in Cl-doped Bi2Te3-xSex alloys. ACS. Appl. Mater. Interfaces. 2022, 14, 33567-79.
55. Zahid, A. H.; Han, Q. A review on the preparation, microstructure, and photocatalytic performance of Bi2O3 in polymorphs. Nanoscale 2021, 13, 17687-724.
56. Sun, G.; Li, B.; Wang, S.; et al. Selective growth of wide band gap atomically thin Sb2O3 inorganic molecular crystal on WS2. Nano. Res. 2019, 12, 2781-7.
57. Guo, S.; Zhu, Z.; Hu, X.; et al. Ultrathin tellurium dioxide: emerging direct bandgap semiconductor with high-mobility transport anisotropy. Nanoscale 2018, 10, 8397-403.
58. Zhao, Y.; Dyck, J. S.; Hernandez, B. M.; Burda, C. Enhancing thermoelectric performance of ternary nanocrystals through adjusting carrier concentration. J. Am. Chem. Soc. 2010, 132, 4982-3.
59. Scheele, M.; Oeschler, N.; Veremchuk, I.; et al. ZT enhancement in solution-grown Sb2-xBixTe3 nanoplatelets. ACS. Nano. 2010, 4, 4283-91.
60. Zhang, C.; Peng, Z.; Li, Z.; Yu, L.; Khor, K. A.; Xiong, Q. Controlled growth of bismuth antimony telluride BixSb2-xTe3 nanoplatelets and their bulk thermoelectric nanocomposites. Nano. Energy. 2015, 15, 688-96.
61. Nam, G.; Ha, J. U.; Chung, D. S. Thermoelectric power factor exceeding 50 μW m-1K-2 from water-borne colloids of polymer semiconductors. J. Mater. Chem. C. 2020, 8, 13439-44.
62. Yang, H. Q.; Miao, L.; Zhang, M.; et al. Low-temperature, solution-based, scalable synthesis of Sb2Te3 nanoparticles with an enhanced power factor. J. Electron. Mater. 2014, 43, 2165-73.
63. Ruamruk, S.; Chayasombat, B.; Singsoog, K.; et al. Power factor of Bi2Te3 and Sb2Te3 enhanced by high density and hardness. Suranaree. J. Sci. Technol. 2023, 30, 030145(1-5).
64. Imamuddin, M.; Dupre, A. Thermoelectric properties of p-type Bi2Te3-Sb2Te3-Sb2Se3 alloys and N-type Bi2Te3-Bi2Se3 alloys in the temperature range 300 to 600 K. Phys. Stat. Sol. 1972, 10, 415-24.
65. Han, M. K.; Jin, Y.; Lee, D. H.; Kim, S. J. Thermoelectric properties of Bi2Te3: CuI and the effect of its doping with Pb atoms. Materials 2017, 10, 1235.
66. Park, D.; Park, S.; Jeong, K.; Jeong, H. S.; Song, J. Y.; Cho, M. H. Thermal and electrical conduction of single-crystal Bi2Te3 nanostructures grown using a one step process. Sci. Rep. 2016, 6, 19132.
67. Son, J. S.; Choi, M. K.; Han, M. K.; et al. n-type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. Nano. Lett. 2012, 12, 640-7.
68. Lim, Y. S.; Wi, S.; Lee, G. Synthesis of n-type Bi2Te1-xSex compounds through oxide reduction process and related thermoelectric properties. J. Eur. Ceram. Soc. 2017, 37, 3361-6.
69. Mehta, R. J.; Zhang, Y.; Karthik, C.; et al. A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nat. Mater. 2012, 11, 233-40.
70. Dharmaiah, P.; Hong, S. Hydrothermal method for the synthesis of Sb2Te3, and Bi0.5Sb1.5Te3 nanoplates and their thermoelectric properties. Int. J. Appl. Ceram. Technol. 2018, 15, 132-9.