REFERENCES

1. Huang, W.; Feng, X.; Han, X.; Zhang, W.; Jiang, F. Questions and answers relating to lithium-ion battery safety issues. Cell. Rep. Phys. Sci. 2021, 2, 100285.

2. Liu, K.; Liu, Y.; Lin, D.; Pei, A.; Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 2018, 4, eaas9820.

3. Ge, S.; Leng, Y.; Liu, T.; et al. A new approach to both high safety and high performance of lithium-ion batteries. Sci. Adv. 2020, 6, eaay7633.

4. Xia, Q.; Ren, Y.; Wang, Z.; et al. Safety risk assessment method for thermal abuse of lithium-ion battery pack based on multiphysics simulation and improved bisection method. Energy 2023, 264, 126228.

5. Han, X.; Lu, L.; Zheng, Y.; et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle. eTransportation 2019, 1, 100005.

6. Liu, J.; Yadav, S.; Salman, M.; Chavan, S.; Kim, S. C. Review of thermal coupled battery models and parameter identification for lithium-ion battery heat generation in EV battery thermal management system. Int. J. Heat. Mass. Transf. 2024, 218, 124748.

7. Feng, X.; Ren, D.; He, X.; Ouyang, M. Mitigating thermal runaway of lithium-ion batteries. Joule 2020, 4, 743-70.

8. Shahid, S.; Agelin-Chaab, M. A review of thermal runaway prevention and mitigation strategies for lithium-ion batteries. Energy. Convers. Man. X. 2022, 16, 100310.

9. Zheng, Y.; Che, Y.; Hu, X.; Sui, X.; Stroe, D.; Teodorescu, R. Thermal state monitoring of lithium-ion batteries: progress, challenges, and opportunities. Prog. Energy. Combust. Sci. 2024, 100, 101120.

10. Feng, X.; Zheng, S.; Ren, D.; et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database. Appl. Energy. 2019, 246, 53-64.

11. Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy. Storage. Mater. 2018, 10, 246-67.

12. Gustafsson, O.; Kullgren, J.; Brant, W. R. Low-temperature cation ordering in high voltage spinel cathode material. ACS. Appl. Energy. Mater. 2023, 6, 5000-8.

13. Duan, Y.; Chen, S.; Zhang, L.; Guo, L.; Shi, F. Review on oxygen release mechanism and modification strategy of nickel-rich NCM cathode materials for lithium-ion batteries: recent advances and future directions. Energy. Fuels. 2024, 38, 5607-31.

14. Li, Y.; Liu, X.; Wang, L.; et al. Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials. Nano. Energy. 2021, 85, 105878.

15. Shadike, Z.; Lee, H.; Borodin, O.; et al. Identification of LiH and nanocrystalline LiF in the solid-electrolyte interphase of lithium metal anodes. Nat. Nanotechnol. 2021, 16, 549-54.

16. Nam, K.; Bak, S.; Hu, E.; et al. Combining in situ synchrotron X‐ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium‐ion batteries. Adv. Funct. Mater. 2013, 23, 1047-63.

17. Liu, X.; Ren, D.; Hsu, H.; et al. Thermal runaway of lithium-ion batteries without internal short circuit. Joule 2018, 2, 2047-64.

18. Wang, Y.; Ren, D.; Feng, X.; Wang, L.; Ouyang, M. Thermal runaway modeling of large format high-nickel/silicon-graphite lithium-ion batteries based on reaction sequence and kinetics. Appl. Energy. 2022, 306, 117943.

19. Wu, Y.; Feng, X.; Liu, X.; et al. In-built ultraconformal interphases enable high-safety practical lithium batteries. Energy. Storage. Mater. 2021, 43, 248-57.

20. Qiu, B.; Zhang, M.; Wu, L.; et al. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat. Commun. 2016, 7, 12108.

21. Wang, Y.; Feng, X.; Peng, Y.; et al. Reductive gas manipulation at early self-heating stage enables controllable battery thermal failure. Joule 2022, 6, 2810-20.

22. Qamar, R.; Ali, Zardari, B. Artificial neural networks: an overview. Mesopotamian. J. Comput. Sci. 1993, 30.

23. Chen, J.; Qi, G.; Wang, K. Synergizing machine learning and the aviation sector in lithium-ion battery applications: a review. Energies 2023, 16, 6318.

24. Liang, L.; Li, X.; Zhao, F.; et al. Construction and operating mechanism of high-rate Mo-doped Na3V2(PO4)3@C nanowires toward practicable wide-temperature-tolerance Na-ion and hybrid Li/Na-ion batteries. Adv. Energy. Mater. 2021, 11, 2100287.

25. Liu, Z.; Yang, X. Thermal stability enhancement and prediction by ANN model. Energy. AI. 2024, 16, 100348.

26. Burgaz, E.; Yazici, M.; Kapusuz, M.; Alisir, S. H.; Ozcan, H. Prediction of thermal stability, crystallinity and thermomechanical properties of poly(ethylene oxide)/clay nanocomposites with artificial neural networks. Thermochim. Acta. 2014, 575, 159-66.

27. Kurucan, M.; Özbaltan, M.; Yetgin, Z.; Alkaya, A. Applications of artificial neural network based battery management systems: a literature review. Renew. Sustain. Energy. Rev. 2024, 192, 114262.

28. Ng, M.; Sun, Y.; Seh, Z. W. Machine learning-inspired battery material innovation. Energy. Adv. 2023, 2, 449-64.

29. Chen, Y.; Wang, Z.; Lin, S.; Qin, Y.; Huang, X. A review on biomass thermal-oxidative decomposition data and machine learning prediction of thermal analysis. Clean. Mater. 2023, 9, 100206.

30. Ren, D.; Liu, X.; Feng, X.; et al. Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components. Appl. Energy. 2018, 228, 633-44.

31. Ren, D.; Feng, X.; Liu, L.; et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition. Energy. Storage. Mater. 2021, 34, 563-73.

32. Manthiram, A.; Song, B.; Li, W. A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy. Storage. Mater. 2017, 6, 125-39.

33. Manthiram, A.; Vadivel, Murugan, A.; Sarkar, A.; Muraliganth, T. Nanostructured electrode materials for electrochemical energy storage and conversion. Energy. Environ. Sci. 2008, 1, 621.

34. Huang, Z.; Yu, D.; Makuza, B.; Tian, Q.; Guo, X.; Zhang, K. Hydrogen reduction of spent lithium-ion battery cathode material for metal recovery: mechanism and kinetics. Front. Chem. 2022, 10, 1019493.

35. Zhang, Y.; Wang, H.; Li, W.; Li, C.; Ouyang, M. Size distribution and elemental composition of vent particles from abused prismatic Ni-rich automotive lithium-ion batteries. J. Energy. Storage. 2019, 26, 100991.

36. Wu, C.; Wu, Y.; Feng, X.; et al. Ultra-high temperature reaction mechanism of LiNi0.8Co0.1Mn0.1O2 electrode. J. Energy. Storage. 2022, 52, 104870.

37. Zheng, J.; Liu, T.; Hu, Z.; et al. Tuning of thermal stability in layered Li(NixMnyCoz)O2. J. Am. Chem. Soc. 2016, 138, 13326-34.

38. Bak, S.; Nam, K.; Chang, W.; et al. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials. Chem. Mater. 2013, 25, 337-51.

39. Li, K.; Huang, X.; Fleischmann, C.; Rein, G.; Ji, J. Pyrolysis of medium-density fiberboard: optimized search for kinetics scheme and parameters via a genetic algorithm driven by kissinger's method. Energy. Fuels. 2014, 28, 6130-9.

40. Lee, S. H.; Moon, J.; Lee, M.; Yu, T.; Kim, H.; Park, B. M. Enhancing phase stability and kinetics of lithium-rich layered oxide for an ultra-high performing cathode in Li-ion batteries. J. Power. Sources. 2015, 281, 77-84.

41. Hatsukade, T.; Schiele, A.; Hartmann, P.; Brezesinski, T.; Janek, J. Origin of carbon dioxide evolved during cycling of nickel-rich layered NCM cathodes. ACS. Appl. Mater. Interfaces. 2018, 10, 38892-9.

42. Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 Years of lithium-ion batteries. Adv. Mater. 2018, 30, e1800561.

43. Bonnick, P.; Muldoon, J. The quest for the holy grail of solid-state lithium batteries. Energy. Environ. Sci. 2022, 15, 1840-60.

44. Choi, J. Investigation of the correlation of building energy use intensity estimated by six building performance simulation tools. Energy. Build. 2017, 147, 14-26.

45. Anifowose, F.; Labadin, J.; Abdulraheem, A. Improving the prediction of petroleum reservoir characterization with a stacked generalization ensemble model of support vector machines. Appl. Soft. Comput. 2015, 26, 483-96.

46. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273-97.

47. Otchere, D. A.; Arbi Ganat, T. O.; Gholami, R.; Ridha, S. Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties: comparative analysis of ANN and SVM models. J. Pet. Sci. Eng. 2021, 200, 108182.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/