REFERENCES

1. Gür TM. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ Sci 2018;11:2696-767.

2. Bullich-massagué E, Cifuentes-garcía F, Glenny-crende I, et al. A review of energy storage technologies for large scale photovoltaic power plants. Appl Energy 2020;274:115213.

3. Yan Y, Zeng T, Liu S, Shu C, Zeng Y. Lithium metal stabilization for next-generation lithium-based batteries: from fundamental chemistry to advanced characterization and effective protection. Energy Mater 2023;3:300002.

4. Deng S, Wang H, Liu H, Liu J, Yan H. Research progress in improving the rate performance of LiFePO4 cathode materials. Nano-Micro Lett 2014;6:209-26.

5. Heubner C, Nikolowski K, Reuber S, Schneider M, Wolter M, Michaelis A. Recent insights into rate performance limitations of Li-ion batteries. Batteries Supercaps 2021;4:268-85.

6. Wu R, Xia G, Shen S, Zhu F, Jiang F, Zhang J. Soft-templated LiFePO4/mesoporous carbon nanosheets (LFP/meso-CNSs) nanocomposite as the cathode material of lithium ion batteries. RSC Adv 2014;4:21325-31.

7. Khan S, Raj RP, Mohan TV, Bhuvaneswari S, Varadaraju UV, Selvam P. Electrochemical performance of nano-LiFePO4 embedded ordered mesoporous nitrogenous carbon composite as cathode material for Li-ion battery applications. J Electroanal Chem 2019;848:113242.

8. Khan S, Raj RP, Rama Mohan TV, Selvam P. Electrochemical performance of nano-sized LiFePO4-embedded 3D-cubic ordered mesoporous carbon and nitrogenous carbon composites. RSC Adv 2020;10:30406-14.

9. Kim DW, Hwang SM, Yoo JB, Kim Y. Electrode engineering with CNTs to enhance the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathodes with commercial level design parameters. ChemElectroChem 2020;7:2621-8.

10. Ghiyasiyan-arani M, Salavati-niasari M. Strategic design and electrochemical behaviors of Li-ion battery cathode nanocomposite materials based on AlV3O9 with carbon nanostructures. Compos Part B Eng 2020;183:107734.

11. Yin L, Geng Z, Chien Y, et al. Implementing intermittent current interruption into Li-ion cell modelling for improved battery diagnostics. Electrochim Acta 2022;427:140888.

12. Millares MFC, Takeuchi ES, Takeuchi KJ, Marschilok AC, Bock DC. Optimization of electrolyte volume in lithium-ion pouch-type cells. MRS Adv 2023;8:381-5.

13. Wang L, Zhen M, Hu Z. Status and prospects of electrocatalysts for lithium-sulfur battery under lean electrolyte and high sulfur loading conditions. Chem Eng J 2023;452:139344.

14. Xue S, Wang J, Xia Y, et al. Mesoporous carbon as conductive additive to improve the high-rate charge/discharge capacity of lithium-ion batteries. Energy Technol 2022;10:2200472.

15. Stępień D, Zhao Z, Dsoke S. Shift to post-Li-ion capacitors: electrochemical behavior of activated carbon electrodes in Li-, Na- and K-salt containing organic electrolytes. J Electrochem Soc 2018;165:A2807-14.

16. Zou K, Cai P, Deng X, et al. Revealing dual capacitive mechanism of carbon cathode toward ultrafast quasi-solid-state lithium ion capacitors. J Energy Chem 2021;60:209-21.

17. Liu W, Zhang X, Xu Y, et al. Recent advances on carbon-based materials for high performance lithium-ion capacitors. Batteries Supercaps 2021;4:407-28.

18. Sun X, Zhang X, Zhang H, Xu N, Wang K, Ma Y. High performance lithium-ion hybrid capacitors with pre-lithiated hard carbon anodes and bifunctional cathode electrodes. J Power Sources 2014;270:318-25.

19. Yan J, Chen XJ, Shellikeri A, et al. Influence of Lithium iron phosphate positive electrode material to hybrid lithium-ion battery capacitor (H-LIBC) energy storage devices. J Electrochem Soc 2018;165:A2774-80.

20. Hagen M, Yan J, Cao W, et al. Hybrid lithium-ion battery-capacitor energy storage device with hybrid composite cathode based on activated carbon/LiNi0.5Co0.2Mn0.3O2. J Power Sources 2019;433:126689.

21. Lee SH, Huang C, Grant PS. High energy lithium ion capacitors using hybrid cathodes comprising electrical double layer and intercalation host multi-layers. Energy Stor Mater 2020;33:408-15.

22. Guo Z, Liu Z, Sun X, et al. Probing current contribution of lithium-ion battery/lithium-ion capacitor multi-structure hybrid systems. J Power Sources 2022;548:232016.

23. Han Y, Wang Z, Xie L, et al. Revealing the accelerated reaction kinetic of Ni-rich cathodes by activated carbons for high performance lithium-ion batteries. Carbon 2023;203:445-54.

24. Yang Z, Tian J, Ye Z, et al. High energy and high power density supercapacitor with 3D Al foam-based thick graphene electrode: Fabrication and simulation. Energy Stor Mater 2020;33:18-25.

25. Yang Z, Wang J, Cui C, et al. High power density & energy density Li-ion battery with aluminum foam enhanced electrode: fabrication and simulation. J Power Sources 2022;524:230977.

26. Shellikeri A, Hung I, Gan Z, Zheng J. In Situ NMR tracks real-time Li ion movement in hybrid supercapacitor-battery device. J Phys Chem C 2016;120:6314-23.

27. Shellikeri A, Yturriaga S, Zheng J, et al. Hybrid lithium-ion capacitor with LiFePO4/AC composite cathode - Long term cycle life study, rate effect and charge sharing analysis. J Power Sources 2018;392:285-95.

28. Jin L, Zheng J, Wu Q, et al. Exploiting a hybrid lithium ion power source with a high energy density over 30 Wh/kg. Mater Today Energy 2018;7:51-7.

29. Guan Y, Shen J, Wei X, et al. LiFePO4/activated carbon/graphene composite with capacitive-battery characteristics for superior high-rate lithium-ion storage. Electrochim Acta 2019;294:148-55.

30. Hu X, Huai Y, Lin Z, Suo J, Deng Z. A (LiFePO4-AC)/Li4Ti5O12 hybrid battery capacitor. J Electrochem Soc 2007;154:A1026.

31. Böckenfeld N, Placke T, Winter M, Passerini S, Balducci A. The influence of activated carbon on the performance of lithium iron phosphate based electrodes. Electrochim Acta 2012;76:130-6.

32. Wang B, Wang Q, Xu B, Liu T, Wang D, Zhao G. The synergy effect on Li storage of LiFePO4 with activated carbon modifications. RSC Adv 2013;3:20024-33.

33. Padhi AK, Nanjundaswamy KS, Goodenough JB. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 1997;144:1188-94.

34. Andersson A, Thomas J. The source of first-cycle capacity loss in LiFePO4. J Power Sources 2001;97-8:498-502.

35. Srinivasan V, Newman J. Discharge model for the lithium iron-phosphate electrode. J Electrochem Soc 2004;151:A1517-29.

36. Yamada A, Koizumi H, Sonoyama N, Kanno R. Phase change in LixFePO4. Electrochem Solid State Lett 2005;8:A409.

37. Saikia D, Deka JR, Chou C, Lin C, Yang Y, Kao H. Encapsulation of LiFePO4 nanoparticles into 3D interpenetrating ordered mesoporous carbon as a high-performance cathode for lithium-ion batteries exceeding theoretical capacity. ACS Appl Energy Mater 2019;2:1121-33.

38. Cheng F, Li D, Lu A, Li W. Controllable synthesis of high loading LiFePO4/C nanocomposites using bimodal mesoporous carbon as support for high power Li-ion battery cathodes. J Energy Chem 2013;22:907-13.

39. Delmas C, Maccario M, Croguennec L, Le Cras F, Weill F. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat Mater 2008;7:665-71.

40. Orikasa Y, Maeda T, Koyama Y, et al. Direct observation of a metastable crystal phase of LixFePO4 under electrochemical phase transition. J Am Chem Soc 2013;135:5497-500.

41. Takahashi I, Mori T, Yoshinari T, et al. Irreversible phase transition between LiFePO4 and FePO4 during high-rate charge-discharge reaction by operando X-ray diffraction. J Power Sources 2016;309:122-6.

42. Chen G, Song X, Richardson TJ. Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem Solid State Lett 2006;9:A295.

43. Laffont L, Delacourt C, Gibot P, et al. Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chem Mater 2006;18:5520-9.

44. Fan J, Chen J, Chen Y, et al. Hierarchical structure LiFePO4@C synthesized by oleylamine-mediated method for low temperature applications. J Mater Chem A 2014;2:4870-3.

45. Gaberscek M. Towards optimized preparation of cathode materials: how can modeling and concepts be used in practice. J Power Sources 2009;189:22-7.

46. Varzi A, Ramirez-castro C, Balducci A, Passerini S. Performance and kinetics of LiFePO4-carbon bi-material electrodes for hybrid devices: a comparative study between activated carbon and multi-walled carbon nanotubes. J Power Sources 2015;273:1016-22.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/