REFERENCES

1. Grundish, N. S.; Goodenough, J. B.; Khani, H. Designing composite polymer electrolytes for all-solid-state lithium batteries. Curr. Opin. Electrochem. 2021, 30, 100828.

2. Yao, P.; Yu, H.; Ding, Z.; et al. Review on polymer-based composite electrolytes for lithium batteries. Front. Chem. 2019, 7, 522.

3. Yu, X.; Manthiram, A. A review of composite polymer-ceramic electrolytes for lithium batteries. Energy. Storage. Mater. 2021, 34, 282-300.

4. Meng, N.; Zhu, X.; Lian, F. Particles in composite polymer electrolyte for solid-state lithium batteries: a review. Particuology 2022, 60, 14-36.

5. Bonnick, P.; Muldoon, J. The quest for the holy grail of solid-state lithium batteries. Energy. Environ. Sci. 2022, 15, 1840-60.

6. Lu, X.; Wang, Y.; Xu, X.; Yan, B.; Wu, T.; Lu, L. Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries - review. Adv. Energy. Mater. 2023, 13, 2301746.

7. Zagórski, J.; López, A. J. M.; Cordill, M. J.; Aguesse, F.; Buannic, L.; Llordés, A. Garnet-polymer composite electrolytes: new insights on local Li-ion dynamics and electrodeposition stability with Li metal anodes. ACS. Appl. Energy. Mater. 2019, 2, 1734-46.

8. Yang, T.; Zheng, J.; Cheng, Q.; Hu, Y. Y.; Chan, C. K. Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology. ACS. Appl. Mater. Interfaces. 2017, 9, 21773-80.

9. Din, M. M. U.; Häusler, M.; Fischer, S. M.; et al. Role of filler content and morphology in LLZO/PEO membranes. Front. Energy. Res. 2021, 9, 711610.

10. Counihan, M. J.; Powers, D. J.; Barai, P.; et al. Understanding the influence of Li7La3Zr2O12 nanofibers on critical current density and coulombic efficiency in composite polymer electrolytes. ACS. Appl. Mater. Interfaces. 2023, 15, 26047-59.

11. Chan, C. K.; Yang, T.; Mark, W. J. Nanostructured garnet-type Li7La3Zr2O12: synthesis, properties, and opportunities as electrolytes for Li-ion batteries. Electrochim. Acta. 2017, 253, 268-80.

12. Bonilla, M. R.; García, D. F. A.; Ranque, P.; Aguesse, F.; Carrasco, J.; Akhmatskaya, E. Unveiling interfacial Li-ion dynamics in Li7La3Zr2O12/PEO(LiTFSI) composite polymer-ceramic solid electrolytes for all-solid-state lithium batteries. ACS. Appl. Mater. Interfaces. 2021, 13, 30653-67.

13. Brogioli, D.; Langer, F.; Kun, R.; La, M. F. Space-charge effects at the Li7La3Zr2O12/poly(ethylene oxide) interface. ACS. Appl. Mater. Interfaces. 2019, 11, 11999-2007.

14. Ranque, P.; Zagórski, J.; Devaraj, S.; Aguesse, F.; López, A. J. M. Characterization of the interfacial Li-ion exchange process in a ceramic-polymer composite by solid state NMR. J. Mater. Chem. A. 2021, 9, 17812-20.

15. Kondori, A.; Esmaeilirad, M.; Harzandi, A. M.; et al. A room temperature rechargeable Li2O-based lithium-air battery enabled by a solid electrolyte. Science 2023, 379, 499-505.

16. Yan, C.; Zhu, P.; Jia, H.; et al. Garnet-rich composite solid electrolytes for dendrite-free, high-rate, solid-state lithium-metal batteries. Energy. Storage. Mater. 2020, 26, 448-56.

17. Kuhnert, E.; Ladenstein, L.; Jodlbauer, A.; et al. Lowering the interfacial resistance in Li6.4La3Zr1.4Ta0.6O12|poly(ethylene oxide) composite electrolytes. Cell. Rep. Phys. Sci. 2020, 1, 100214.

18. Hou, W.; Chen, Z.; Wang, S.; et al. A “concentrated ionogel-in-ceramic” silanization composite electrolyte with superior bulk conductivity and low interfacial resistance for quasi-solid-state Li metal batteries. Energy. Environ. Mater. 2024, 7, e12736.

19. Helmers, L.; Frankenberg, F.; Brokmann, J.; et al. Functionalized thiophosphate and oxidic filler particles for hybrid solid electrolytes. ChemElectroChem 2023, 10, e202300310.

20. Yu, D.; Tronstad, Z. C.; McCloskey, B. D. Lithium-ion transport and exchange between phases in a concentrated liquid electrolyte containing lithium-ion-conducting inorganic particles. ACS. Energy. Lett. 2024, 9, 1717-24.

21. Ihrig, M.; Finsterbusch, M.; Tsai, C.; et al. Low temperature sintering of fully inorganic all-solid-state batteries - impact of interfaces on full cell performance. J. Power. Sources. 2021, 482, 228905.

22. Cheng, L.; Liu, M.; Mehta, A.; et al. Garnet electrolyte surface degradation and recovery. ACS. Appl. Energy. Mater. 2018, 1, 7244-52.

23. Larraz, G.; Orera, A.; Sanjuán, M. L. Cubic phases of garnet-type Li7La3Zr2O12: the role of hydration. J. Mater. Chem. A. 2013, 1, 11419.

24. Gupta, A.; Sakamoto, J. Controlling ionic transport through the PEO-LiTFSI/LLZTO interface. Electrochem. Soc. Interface. 2019, 28, 63-9.

25. Evans, J.; Vincent, C. A.; Bruce, P. G. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 1987, 28, 2324-8.

26. Huo, H.; Chen, Y.; Zhao, N.; et al. In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries. Nano. Energy. 2019, 61, 119-25.

27. Ruan, Y.; Lu, Y.; Huang, X.; et al. Acid induced conversion towards a robust and lithiophilic interface for Li-Li7La3Zr2O12 solid-state batteries. J. Mater. Chem. A. 2019, 7, 14565-74.

28. Guo, Y.; Cheng, J.; Zeng, Z.; et al. Li2CO3: insights into its blocking effect on Li-ion transfer in garnet composite electrolytes. ACS. Appl. Energy. Mater. 2022, 5, 2853-61.

29. Besli, M. M.; Usubelli, C.; Metzger, M.; et al. Effect of liquid electrolyte soaking on the interfacial resistance of Li7La3Zr2O12 for all-solid-state lithium batteries. ACS. Appl. Mater. Interfaces. 2020, 12, 20605-12.

30. Liu, X.; Chen, Y.; Hood, Z. D.; et al. Elucidating the mobility of H+ and Li+ ions in (Li6.25-xHxAl0.25)La3Zr2O12 via correlative neutron and electron spectroscopy. Energy. Environ. Sci. 2019, 12, 945-51.

31. Orera, A.; Larraz, G.; Rodríguez-Velamazán, J. A.; Campo, J.; Sanjuán, M. L. Influence of Li+ and H+ distribution on the crystal structure of Li7-xHxLa3Zr2O12 (0 ≤ x ≤ 5) garnets. Inorg. Chem. 2016, 55, 1324-32.

32. Hiebl, C.; Young, D.; Wagner, R.; Wilkening, H. M. R.; Redhammer, G. J.; Rettenwander, D. Proton bulk diffusion in cubic Li7La3Zr2O12 garnets as probed by single X-ray diffraction. J. Phys. Chem. C. 2019, 123, 1094-8.

33. Rosen, M.; Ye, R.; Mann, M.; et al. Controlling the lithium proton exchange of LLZO to enable reproducible processing and performance optimization. J. Mater. Chem. A. 2021, 9, 4831-40.

34. Grissa, R.; Payandeh, S.; Heinz, M.; Battaglia, C. Impact of protonation on the electrochemical performance of Li7La3Zr2O12 garnets. ACS. Appl. Mater. Interfaces. 2021, 13, 14700-9.

35. Zaman, W.; Hortance, N.; Dixit, M. B.; De, A. V.; Hatzell, K. B. Visualizing percolation and ion transport in hybrid solid electrolytes for Li-metal batteries. J. Mater. Chem. A. 2019, 7, 23914-21.

36. Gao, K. W.; Fang, C.; Halat, D. M.; Mistry, A.; Newman, J.; Balsara, N. P. The transference number. Energy. Environ. Mater. 2022, 5, 366-9.

37. Chintapalli, M.; Timachova, K.; Olson, K. R.; et al. Relationship between conductivity, ion diffusion, and transference number in perfluoropolyether electrolytes. Macromolecules 2016, 49, 3508-15.

38. Kim, H.; Barai, P.; Chavan, K.; Srinivasan, V. Transport and mechanical behavior in PEO-LLZO composite electrolytes. J. Solid. State. Electrochem. 2022, 26, 2059-75.

39. Dissanayake, M.; Jayathilaka, P.; Bokalawala, R.; Albinsson, I.; Mellander, B. Effect of concentration and grain size of alumina filler on the ionic conductivity enhancement of the (PEO)9LiCF3SO3:Al2O3 composite polymer electrolyte. J. Power. Sources. 2003, 119-121, 409-14.

40. Zheng, J.; Dang, H.; Feng, X.; Chien, P.; Hu, Y. Li-ion transport in a representative ceramic-polymer-plasticizer composite electrolyte: Li7La3Zr2O12-polyethylene oxide-tetraethylene glycol dimethyl ether. J. Mater. Chem. A. 2017, 5, 18457-63.

41. Chen, X. C.; Liu, X.; Samuthira, P. A.; Lou, K.; Delnick, F. M.; Dudney, N. J. Determining and minimizing resistance for ion transport at the polymer/ceramic electrolyte interface. ACS. Energy. Lett. 2019, 4, 1080-5.

42. Vadhva, P.; Hu, J.; Johnson, M. J.; et al. Electrochemical impedance spectroscopy for all-solid-state batteries: theory, methods and future outlook. ChemElectroChem 2021, 8, 1930-47.

43. Isaac, J. A.; Mangani, L. R.; Devaux, D.; Bouchet, R. Electrochemical impedance spectroscopy of PEO-LATP model multilayers: ionic charge transport and transfer. ACS. Appl. Mater. Interfaces. 2022, 14, 13158-68.

44. Kremer, S.; Rekers, R.; Sigar, U.; et al. A simple method for the study of heteroionic interface impedances in solid electrolyte multilayer cells containing LLZO. ACS. Appl. Mater. Interfaces. 2024, 16, 44236-48.

45. Tenhaeff, W. E.; Perry, K. A.; Dudney, N. J. Impedance characterization of Li ion transport at the interface between laminated ceramic and polymeric electrolytes. J. Electrochem. Soc. 2012, 159, A2118-23.

46. Dong, B. X.; Bennington, P.; Kambe, Y.; et al. Nanothin film conductivity measurements reveal interfacial influence on ion transport in polymer electrolytes. Mol. Syst. Des. Eng. 2019, 4, 597-608.

47. Wang, J.; Fan, L.; Du, Q.; Jiao, K. Lithium ion transport in solid polymer electrolyte filled with alumina nanoparticles. Energy. Adv. 2022, 1, 269-76.

48. Eriksson, T.; Mindemark, J.; Yue, M.; Brandell, D. Effects of nanoparticle addition to poly(ε-caprolactone) electrolytes: crystallinity, conductivity and ambient temperature battery cycling. Electrochim. Acta. 2019, 300, 489-96.

49. St-onge, V.; Cui, M.; Rochon, S.; Daigle, J.; Claverie, J. P. Reducing crystallinity in solid polymer electrolytes for lithium-metal batteries via statistical copolymerization. Commun. Mater. 2021, 2, 187.

50. Li, Z.; Huang, H. M.; Zhu, J. K.; et al. Ionic conduction in composite polymer electrolytes: case of PEO:Ga-LLZO composites. ACS. Appl. Mater. Interfaces. 2019, 11, 784-91.

51. Jayathilaka, P.; Dissanayake, M.; Albinsson, I.; Mellander, B. Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9LiTFSI polymer electrolyte system. Electrochim. Acta. 2002, 47, 3257-68.

52. Zheng, J.; Tang, M.; Hu, Y. Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. 2016, 55, 12538-42.

53. Zheng, J.; Hu, Y. Y. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes. ACS. Appl. Mater. Interfaces. 2018, 10, 4113-20.

54. Wu, N.; Chien, P. H.; Qian, Y.; et al. Enhanced surface interactions enable fast Li+ conduction in oxide/polymer composite electrolyte. Angew. Chem. Int. Ed. 2020, 59, 4131-7.

55. Mirmira, P.; Fuschi, C.; Gillett, W.; et al. Nonconductive polymers enable higher ionic conductivities and suppress reactivity in hybrid sulfide-polymer solid state electrolytes. ACS. Appl. Energy. Mater. 2022, 5, 8900-12.

56. Eckhardt, J. K.; Klar, P. J.; Janek, J.; Heiliger, C. Interplay of dynamic constriction and interface morphology between reversible metal anode and solid electrolyte in solid state batteries. ACS. Appl. Mater. Interfaces. 2022, 14, 35545-54.

57. Eckhardt, J. K.; Fuchs, T.; Burkhardt, S.; Klar, P. J.; Janek, J.; Heiliger, C. 3D impedance modeling of metal anodes in solid-state batteries-incompatibility of pore formation and constriction effect in physical-based 1D circuit models. ACS. Appl. Mater. Interfaces. 2022, 14, 42757-69.

58. Eckhardt, J. K.; Kremer, S.; Fuchs, T.; et al. Influence of microstructure on the material properties of LLZO ceramics derived by impedance spectroscopy and brick layer model analysis. ACS. Appl. Mater. Interfaces. 2023, 15, 47260-77.

59. Liu, K.; Zhang, R.; Sun, J.; Wu, M.; Zhao, T. Polyoxyethylene (PEO)|PEO-perovskite|PEO composite electrolyte for all-solid-state lithium metal batteries. ACS. Appl. Mater. Interfaces. 2019, 11, 46930-7.

60. Kim, H.; Balsara, N. P.; Srinivasan, V. Continuum description of the role of negative transference numbers on ion motion in polymer electrolytes. J. Electrochem. Soc. 2020, 167, 110559.

61. Roering, P.; Overhoff, G. M.; Liu, K. L.; Winter, M.; Brunklaus, G. External pressure in polymer-based lithium metal batteries: an often-neglected criterion when evaluating cycling performance? ACS. Appl. Mater. Interfaces. 2024, 16, 21932-42.

62. Counihan, M. J.; Chavan, K. S.; Barai, P.; et al. The phantom menace of dynamic soft-shorts in solid-state battery research. Joule 2024, 8, 64-90.

63. Fuchs, T.; Haslam, C. G.; Richter, F. H.; Sakamoto, J.; Janek, J. Evaluating the use of critical current density tests of symmetric lithium transference cells with solid electrolytes. Adv. Energy. Mater. 2023, 13, 2302383.

64. Li, Z.; Fu, J.; Zhou, X.; et al. Ionic conduction in polymer-based solid electrolytes. Adv. Sci. 2023, 10, e2201718.

65. Harry, K. J.; Hallinan, D. T.; Parkinson, D. Y.; MacDowell, A. A.; Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 2014, 13, 69-73.

66. Gribble, D. A.; Frenck, L.; Shah, D. B.; et al. Comparing experimental measurements of limiting current in polymer electrolytes with theoretical predictions. J. Electrochem. Soc. 2019, 166, A3228-34.

67. Maslyn, J. A.; Frenck, L.; Veeraraghavan, V. D.; et al. Limiting current in nanostructured block copolymer electrolytes. Macromolecules 2021, 54, 4010-22.

68. Lee, J.; Kim, S. Y.; Hoffman, Z. J.; Chen, G.; Balsara, N. P. Experimental platform for determining the maximum limiting current in a polymer electrolyte. ACS. Energy. Lett. 2024, 9, 1796-802.

69. Soulen, C.; Lam, N.; Holoubek, J.; Liu, P. Bridging the gap between pouch and coin cell electrochemical performance in lithium metal batteries. J. Electrochem. Soc. 2024, 171, 020535.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/