REFERENCES
1. Kinnaird, J. A.; Nex, P. A. Critical raw materials. In: Yakovleva, N.; Nickless, E.; editors. Routledge handbook of the extractive industries and sustainable development. London: Routledge; 2022. pp. 13-33.
2. Lee, T. D.; Ebong, A. U. A review of thin film solar cell technologies and challenges. Renew. Sustain. Energy. Rev. 2017, 70, 1286-97.
3. Candelise, C.; Winskel, M.; Gross, R. Implications for CdTe and CIGS technologies production costs of indium and tellurium scarcity. Prog. Photovolt. Res. Appl. 2012, 20, 816-31.
4. Wang, A.; Chang, N. L.; Sun, K.; et al. Analysis of manufacturing cost and market niches for Cu2ZnSnS4 (CZTS) solar cells. Sustain. Energy. Fuels. 2021, 5, 1044-58.
5. Li, J.; Sun, K.; Yuan, X.; Huang, J.; Green, M. A.; Hao, X. Emergence of flexible kesterite solar cells: progress and perspectives. npj. Flex. Electron. 2023, 7, 16.
7. Andrade-Arvizu, J.; Izquierdo-Roca, V.; Becerril-Romero, I.; et al. Is it possible to develop complex S-Se graded band gap profiles in kesterite-based solar cells? ACS. Appl. Mater. Interfaces. 2019, 11, 32945-56.
8. Andrade-arvizu, J.; Fonoll-rubio, R.; Sánchez, Y.; et al. Rear band gap grading strategies on Sn-Ge-alloyed kesterite solar cells. ACS. Appl. Energy. Mater. 2020, 3, 10362-75.
9. Andrade-Arvizu, J.; Rubio, R. F.; Izquierdo-Roca, V.; et al. Controlling the anionic ratio and gradient in kesterite technology. ACS. Appl. Mater. Interfaces. 2022, 14, 1177-86.
10. Mathews, I.; Kantareddy, S. N.; Buonassisi, T.; Peters, I. M. Technology and market perspective for indoor photovoltaic cells. Joule 2019, 3, 1415-26.
11. Ghosh, A. Potential of building integrated and attached/applied photovoltaic (BIPV/BAPV) for adaptive less energy-hungry building’s skin: a comprehensive review. J. Clean. Prod. 2020, 276, 123343.
12. Dinesh, H.; Pearce, J. M. The potential of agrivoltaic systems. Renew. Sustain. Energy. Rev. 2016, 54, 299-308.
13. Green, M. A.; Dunlop, E. D.; Yoshita, M.; et al. Solar cell efficiency tables (Version 63). Prog. Photovolt. Res. Appl. 2024, 32, 3-13. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/pip.3750. [Last accessed on 26 Mar 2025]
14. Grenet, L.; Suzon, M. A. A.; Emieux, F.; Roux, F. Analysis of failure modes in kesterite solar cells. ACS. Appl. Energy. Mater. 2018, 1, 2103-13.
15. Fonoll-rubio, R.; Andrade-arvizu, J.; Blanco-portals, J.; et al. Insights into interface and bulk defects in a high efficiency kesterite-based device. Energy. Environ. Sci. 2021, 14, 507-23.
16. Schorr, S.; Gurieva, G.; Guc, M.; et al. Point defects, compositional fluctuations, and secondary phases in non-stoichiometric kesterites. J. Phys. Energy. 2020, 2, 012002.
17. Li, J.; Huang, J.; Ma, F.; et al. Unveiling microscopic carrier loss mechanisms in 12% efficient Cu2ZnSnSe4 solar cells. Nat. Energy. 2022, 7, 754-64.
18. Giraldo, S.; Jehl, Z.; Placidi, M.; Izquierdo-Roca, V.; Pérez-Rodríguez, A.; Saucedo, E. Progress and perspectives of thin film kesterite photovoltaic technology: a critical review. Adv. Mater. 2019, 31, 1806692.
19. Zhou, J.; Xu, X.; Wu, H.; et al. Control of the phase evolution of kesterite by tuning of the selenium partial pressure for solar cells with 13.8% certified efficiency. Nat. Energy. 2023, 8, 526-35.
20. Gong, Y.; Zhang, Y.; Zhu, Q.; et al. Identifying the origin of the Voc deficit of kesterite solar cells from the two grain growth mechanisms induced by Sn2+ and Sn4+ precursors in DMSO solution. Energy. Environ. Sci. 2021, 14, 2369-80.
21. Gong, Y.; Zhang, Y.; Jedlicka, E.; et al. Sn4+ precursor enables 12.4% efficient kesterite solar cell from DMSO solution with open circuit voltage deficit below 0.30 V. Sci. China. Mater. 2021, 64, 52-60.
22. Ratz, T.; Brammertz, G.; Caballero, R.; et al. Physical routes for the synthesis of kesterite. J. Phys. Energy. 2019, 1, 042003.
23. Giraldo, S.; Saucedo, E.; Neuschitzer, M.; et al. How small amounts of Ge modify the formation pathways and crystallization of kesterites. Energy. Environ. Sci. 2018, 11, 582-93.
24. Hernández-martínez, A.; Placidi, M.; Arqués, L.; et al. Insights into the formation pathways of Cu2ZnSnSe4 using rapid thermal processes. ACS. Appl. Energy. Mater. 2018, 1, 1981-9.
25. Giraldo, S.; Kim, S.; Andrade-arvizu, J. A.; et al. Study and optimization of alternative MBE-deposited metallic precursors for highly efficient kesterite CZTSe:Ge solar cells. Prog. Photovolt. Res. Appl. 2019, 27, 779-88.
26. Taskesen, T.; Steininger, V.; Chen, W.; et al. Resilient and reproducible processing for CZTSe solar cells in the range of 10%. Prog. Photovolt. Res. Appl. 2018, 26, 1003-6.
27. Taskesen, T.; Neerken, J.; Schoneberg, J.; et al. Device characteristics of an 11.4% CZTSe solar cell fabricated from sputtered precursors. Adv. Energy. Mater. 2018, 8, 1703295.
28. Pareek, D.; Taskesen, T.; Márquez, J. A.; et al. Reaction pathway for efficient Cu2ZnSnSe4 solar cells from alloyed Cu-Sn Precursor via a Cu-rich selenization stage. Solar. RRL. 2020, 4, 2000124.
29. Taskesen, T.; Pareek, D.; Nowak, D.; et al. Potential of CZTSe solar cells fabricated by an alloy-based processing strategy. Z. Naturforsch. A. 2019, 74, 673-82.
30. González-castillo, J.; Vigil-galán, O.; Rodríguez, E.; Jiménez-olarte, D.; Leal, J. Cu6Sn5 binary phase as a precursor material of the CZTSe compound: optimization of the synthesis process, physical properties and its performance as an absorbing material in a solar cell. Mater. Scie. Semicond. Process. 2021, 134, 106016.
31. Giraldo, S.; Neuschitzer, M.; Thersleff, T.; et al. Large efficiency improvement in Cu2ZnSnSe4 solar cells by introducing a superficial Ge nanolayer. Adv. Energy. Mater. 2015, 5, 1501070.
32. Fairbrother, A.; Fourdrinier, L.; Fontané, X.; et al. Precursor stack ordering effects in Cu2ZnSnSe4 thin films prepared by rapid thermal processing. J. Phys. Chem. C. 2014, 118, 17291-8.
33. Nowak, D.; Taskesen, T.; Pareek, D.; Pfeiffelmann, T.; Mikolajczak, U.; Gütay, L. Tuning of precursor composition and formation pathway of kesterite absorbers using an in-process composition shift: a path toward higher efficiencies? Solar. RRL. 2021, 5, 2100237.
34. Nowak, D.; Atlan, F.; Pareek, D.; et al. Influence of the precursor composition on the resulting absorber properties and defect concentration in Cu2ZnSnSe4 absorbers. Sol. Energy. Mater. Sol. Cells. 2023, 256, 112342.
36. Márquez, J.; Neuschitzer, M.; Dimitrievska, M.; et al. Systematic compositional changes and their influence on lattice and optoelectronic properties of Cu2ZnSnSe4 kesterite solar cells. Sol. Energy. Mater. Sol. Cells. 2016, 144, 579-85.
37. Heriche, H.; Rouabah, Z.; Bouarissa, N. New ultra thin CIGS structure solar cells using SCAPS simulation program. Int. J. Hydrogen. Energy. 2017, 42, 9524-32.
38. Leonard, E.; Arzel, L.; Tomassini, M.; Zabierowski, P.; Marrón, D. F.; Barreau, N. Cu(In,Ga)Se2 absorber thinning and the homo-interface model: influence of Mo back contact and 3-stage process on device characteristics. J. Appl. Phys. 2014, 116, 074512.
39. Jehl, Z.; Erfurth, F.; Naghavi, N.; et al. Thinning of CIGS solar cells: part II: cell characterizations. Thin. Solid. Films. 2011, 519, 7212-5.
40. Cheon, K. B.; Hwang, S. K.; Seo, S. W.; Park, J. H.; Park, M. A.; Kim, J. Y. Roughness-controlled Cu2ZnSn(S,Se)4 thin-film solar cells with reduced charge recombination. ACS. Appl. Mater. Interfaces. 2019, 11, 24088-95.
41. Scragg, J. J.; Dale, P. J.; Colombara, D.; Peter, L. M. Thermodynamic aspects of the synthesis of thin-film materials for solar cells. Chemphyschem 2012, 13, 3035-46.
42. López-marino, S.; Placidi, M.; Pérez-tomás, A.; et al. Inhibiting the absorber/Mo-back contact decomposition reaction in Cu2ZnSnSe4 solar cells: the role of a ZnO intermediate nanolayer. J. Mater. Chem. A. 2013, 1, 8338.
43. Karade, V.; Lokhande, A.; Babar, P.; et al. Insights into kesterite’s back contact interface: a status review. Sol. Energy. Mater. Sol. Cells. 2019, 200, 109911.
44. Dimitrievska, M.; Oliva, F.; Guc, M.; et al. Defect characterisation in Cu2ZnSnSe4 kesterites via resonance Raman spectroscopy and the impact on optoelectronic solar cell properties. J. Mater. Chem. A. 2019, 7, 13293-304.
45. Weber, A.; Krauth, H.; Perlt, S.; et al. Multi-stage evaporation of Cu2ZnSnS4 thin films. Thin. Solid. Films. 2009, 517, 2524-6.
46. Stanchik, A.; Gremenok, V.; Juskenas, R.; et al. Effects of selenization time and temperature on the growth of Cu2ZnSnSe4 thin films on a metal substrate for flexible solar cells. Solar. Energy. 2019, 178, 142-9.
47. Redinger, A.; Berg, D. M.; Dale, P. J.; Siebentritt, S. The consequences of kesterite equilibria for efficient solar cells. J. Am. Chem. Soc. 2011, 133, 3320-3.