REFERENCES

1. Kinnaird, J. A.; Nex, P. A. Critical raw materials. In: Yakovleva, N.; Nickless, E.; editors. Routledge handbook of the extractive industries and sustainable development. London: Routledge; 2022. pp. 13-33.

2. Lee, T. D.; Ebong, A. U. A review of thin film solar cell technologies and challenges. Renew. Sustain. Energy. Rev. 2017, 70, 1286-97.

3. Candelise, C.; Winskel, M.; Gross, R. Implications for CdTe and CIGS technologies production costs of indium and tellurium scarcity. Prog. Photovolt. Res. Appl. 2012, 20, 816-31.

4. Wang, A.; Chang, N. L.; Sun, K.; et al. Analysis of manufacturing cost and market niches for Cu2ZnSnS4 (CZTS) solar cells. Sustain. Energy. Fuels. 2021, 5, 1044-58.

5. Li, J.; Sun, K.; Yuan, X.; Huang, J.; Green, M. A.; Hao, X. Emergence of flexible kesterite solar cells: progress and perspectives. npj. Flex. Electron. 2023, 7, 16.

6. Tripathi, S.; Maurya, S.; Kumar, B.; Dwivedi, D. K.

7. Andrade-Arvizu, J.; Izquierdo-Roca, V.; Becerril-Romero, I.; et al. Is it possible to develop complex S-Se graded band gap profiles in kesterite-based solar cells? ACS. Appl. Mater. Interfaces. 2019, 11, 32945-56.

8. Andrade-arvizu, J.; Fonoll-rubio, R.; Sánchez, Y.; et al. Rear band gap grading strategies on Sn-Ge-alloyed kesterite solar cells. ACS. Appl. Energy. Mater. 2020, 3, 10362-75.

9. Andrade-Arvizu, J.; Rubio, R. F.; Izquierdo-Roca, V.; et al. Controlling the anionic ratio and gradient in kesterite technology. ACS. Appl. Mater. Interfaces. 2022, 14, 1177-86.

10. Mathews, I.; Kantareddy, S. N.; Buonassisi, T.; Peters, I. M. Technology and market perspective for indoor photovoltaic cells. Joule 2019, 3, 1415-26.

11. Ghosh, A. Potential of building integrated and attached/applied photovoltaic (BIPV/BAPV) for adaptive less energy-hungry building’s skin: a comprehensive review. J. Clean. Prod. 2020, 276, 123343.

12. Dinesh, H.; Pearce, J. M. The potential of agrivoltaic systems. Renew. Sustain. Energy. Rev. 2016, 54, 299-308.

13. Green, M. A.; Dunlop, E. D.; Yoshita, M.; et al. Solar cell efficiency tables (Version 63). Prog. Photovolt. Res. Appl. 2024, 32, 3-13. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/pip.3750. [Last accessed on 26 Mar 2025]

14. Grenet, L.; Suzon, M. A. A.; Emieux, F.; Roux, F. Analysis of failure modes in kesterite solar cells. ACS. Appl. Energy. Mater. 2018, 1, 2103-13.

15. Fonoll-rubio, R.; Andrade-arvizu, J.; Blanco-portals, J.; et al. Insights into interface and bulk defects in a high efficiency kesterite-based device. Energy. Environ. Sci. 2021, 14, 507-23.

16. Schorr, S.; Gurieva, G.; Guc, M.; et al. Point defects, compositional fluctuations, and secondary phases in non-stoichiometric kesterites. J. Phys. Energy. 2020, 2, 012002.

17. Li, J.; Huang, J.; Ma, F.; et al. Unveiling microscopic carrier loss mechanisms in 12% efficient Cu2ZnSnSe4 solar cells. Nat. Energy. 2022, 7, 754-64.

18. Giraldo, S.; Jehl, Z.; Placidi, M.; Izquierdo-Roca, V.; Pérez-Rodríguez, A.; Saucedo, E. Progress and perspectives of thin film kesterite photovoltaic technology: a critical review. Adv. Mater. 2019, 31, 1806692.

19. Zhou, J.; Xu, X.; Wu, H.; et al. Control of the phase evolution of kesterite by tuning of the selenium partial pressure for solar cells with 13.8% certified efficiency. Nat. Energy. 2023, 8, 526-35.

20. Gong, Y.; Zhang, Y.; Zhu, Q.; et al. Identifying the origin of the Voc deficit of kesterite solar cells from the two grain growth mechanisms induced by Sn2+ and Sn4+ precursors in DMSO solution. Energy. Environ. Sci. 2021, 14, 2369-80.

21. Gong, Y.; Zhang, Y.; Jedlicka, E.; et al. Sn4+ precursor enables 12.4% efficient kesterite solar cell from DMSO solution with open circuit voltage deficit below 0.30 V. Sci. China. Mater. 2021, 64, 52-60.

22. Ratz, T.; Brammertz, G.; Caballero, R.; et al. Physical routes for the synthesis of kesterite. J. Phys. Energy. 2019, 1, 042003.

23. Giraldo, S.; Saucedo, E.; Neuschitzer, M.; et al. How small amounts of Ge modify the formation pathways and crystallization of kesterites. Energy. Environ. Sci. 2018, 11, 582-93.

24. Hernández-martínez, A.; Placidi, M.; Arqués, L.; et al. Insights into the formation pathways of Cu2ZnSnSe4 using rapid thermal processes. ACS. Appl. Energy. Mater. 2018, 1, 1981-9.

25. Giraldo, S.; Kim, S.; Andrade-arvizu, J. A.; et al. Study and optimization of alternative MBE-deposited metallic precursors for highly efficient kesterite CZTSe:Ge solar cells. Prog. Photovolt. Res. Appl. 2019, 27, 779-88.

26. Taskesen, T.; Steininger, V.; Chen, W.; et al. Resilient and reproducible processing for CZTSe solar cells in the range of 10%. Prog. Photovolt. Res. Appl. 2018, 26, 1003-6.

27. Taskesen, T.; Neerken, J.; Schoneberg, J.; et al. Device characteristics of an 11.4% CZTSe solar cell fabricated from sputtered precursors. Adv. Energy. Mater. 2018, 8, 1703295.

28. Pareek, D.; Taskesen, T.; Márquez, J. A.; et al. Reaction pathway for efficient Cu2ZnSnSe4 solar cells from alloyed Cu-Sn Precursor via a Cu-rich selenization stage. Solar. RRL. 2020, 4, 2000124.

29. Taskesen, T.; Pareek, D.; Nowak, D.; et al. Potential of CZTSe solar cells fabricated by an alloy-based processing strategy. Z. Naturforsch. A. 2019, 74, 673-82.

30. González-castillo, J.; Vigil-galán, O.; Rodríguez, E.; Jiménez-olarte, D.; Leal, J. Cu6Sn5 binary phase as a precursor material of the CZTSe compound: optimization of the synthesis process, physical properties and its performance as an absorbing material in a solar cell. Mater. Scie. Semicond. Process. 2021, 134, 106016.

31. Giraldo, S.; Neuschitzer, M.; Thersleff, T.; et al. Large efficiency improvement in Cu2ZnSnSe4 solar cells by introducing a superficial Ge nanolayer. Adv. Energy. Mater. 2015, 5, 1501070.

32. Fairbrother, A.; Fourdrinier, L.; Fontané, X.; et al. Precursor stack ordering effects in Cu2ZnSnSe4 thin films prepared by rapid thermal processing. J. Phys. Chem. C. 2014, 118, 17291-8.

33. Nowak, D.; Taskesen, T.; Pareek, D.; Pfeiffelmann, T.; Mikolajczak, U.; Gütay, L. Tuning of precursor composition and formation pathway of kesterite absorbers using an in-process composition shift: a path toward higher efficiencies? Solar. RRL. 2021, 5, 2100237.

34. Nowak, D.; Atlan, F.; Pareek, D.; et al. Influence of the precursor composition on the resulting absorber properties and defect concentration in Cu2ZnSnSe4 absorbers. Sol. Energy. Mater. Sol. Cells. 2023, 256, 112342.

35. Delbos, S. Kësterite thin films for photovoltaics : a review. EPJ. Photovolt. 2012, 3, 35004.

36. Márquez, J.; Neuschitzer, M.; Dimitrievska, M.; et al. Systematic compositional changes and their influence on lattice and optoelectronic properties of Cu2ZnSnSe4 kesterite solar cells. Sol. Energy. Mater. Sol. Cells. 2016, 144, 579-85.

37. Heriche, H.; Rouabah, Z.; Bouarissa, N. New ultra thin CIGS structure solar cells using SCAPS simulation program. Int. J. Hydrogen. Energy. 2017, 42, 9524-32.

38. Leonard, E.; Arzel, L.; Tomassini, M.; Zabierowski, P.; Marrón, D. F.; Barreau, N. Cu(In,Ga)Se2 absorber thinning and the homo-interface model: influence of Mo back contact and 3-stage process on device characteristics. J. Appl. Phys. 2014, 116, 074512.

39. Jehl, Z.; Erfurth, F.; Naghavi, N.; et al. Thinning of CIGS solar cells: part II: cell characterizations. Thin. Solid. Films. 2011, 519, 7212-5.

40. Cheon, K. B.; Hwang, S. K.; Seo, S. W.; Park, J. H.; Park, M. A.; Kim, J. Y. Roughness-controlled Cu2ZnSn(S,Se)4 thin-film solar cells with reduced charge recombination. ACS. Appl. Mater. Interfaces. 2019, 11, 24088-95.

41. Scragg, J. J.; Dale, P. J.; Colombara, D.; Peter, L. M. Thermodynamic aspects of the synthesis of thin-film materials for solar cells. Chemphyschem 2012, 13, 3035-46.

42. López-marino, S.; Placidi, M.; Pérez-tomás, A.; et al. Inhibiting the absorber/Mo-back contact decomposition reaction in Cu2ZnSnSe4 solar cells: the role of a ZnO intermediate nanolayer. J. Mater. Chem. A. 2013, 1, 8338.

43. Karade, V.; Lokhande, A.; Babar, P.; et al. Insights into kesterite’s back contact interface: a status review. Sol. Energy. Mater. Sol. Cells. 2019, 200, 109911.

44. Dimitrievska, M.; Oliva, F.; Guc, M.; et al. Defect characterisation in Cu2ZnSnSe4 kesterites via resonance Raman spectroscopy and the impact on optoelectronic solar cell properties. J. Mater. Chem. A. 2019, 7, 13293-304.

45. Weber, A.; Krauth, H.; Perlt, S.; et al. Multi-stage evaporation of Cu2ZnSnS4 thin films. Thin. Solid. Films. 2009, 517, 2524-6.

46. Stanchik, A.; Gremenok, V.; Juskenas, R.; et al. Effects of selenization time and temperature on the growth of Cu2ZnSnSe4 thin films on a metal substrate for flexible solar cells. Solar. Energy. 2019, 178, 142-9.

47. Redinger, A.; Berg, D. M.; Dale, P. J.; Siebentritt, S. The consequences of kesterite equilibria for efficient solar cells. J. Am. Chem. Soc. 2011, 133, 3320-3.

48. Guo, T.; Yu, Z.; Liu, L.; Zhao, Y.; Zhang, Y. Effect of substrate and selenization temperature on the properties of RF sputtered CZTSe layer. Vacuum 2017, 145, 217-24.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/