REFERENCES

1. Liang, C.; Huang, Z.; Su, J.; Shi, L.; Liang, S.; Dong, Y. Study on performance optimization of perovskite solar cells based on MAPbI3. Adv. Theory. Simul. 2024, 7, 2301015.

2. Stranks, S. D.; Eperon, G. E.; Grancini, G.; et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341-4.

3. Steirer, K. X.; Schulz, P.; Teeter, G.; et al. Defect tolerance in methylammonium lead triiodide perovskite. ACS. Energy. Lett. 2016, 1, 360-6.

4. Saouma, F. O.; Park, D. Y.; Kim, S. H.; Jeong, M. S.; Jang, J. I. Multiphoton absorption coefficients of organic-inorganic lead halide perovskites CH3NH3PbX3 (X = Cl, Br, I) single crystals. Chem. Mater. 2017, 29, 6876-82.

5. Dobrovolsky, A.; Merdasa, A.; Li, J.; Hirselandt, K.; Unger, E. L.; Scheblykin, I. G. Relating defect luminescence and nonradiative charge recombination in MAPbI3 perovskite films. J. Phys. Chem. Lett. 2020, 11, 1714-20.

6. Bi, Y.; Hutter, E. M.; Fang, Y.; Dong, Q.; Huang, J.; Savenije, T. J. Charge carrier lifetimes exceeding 15 μs in methylammonium lead iodide single crystals. J. Phys. Chem. Lett. 2016, 7, 923-8.

7. Wang, Q.; Niu, X.; Ning, W.; Zhu, Z.; Shi, R.; Zhao, Y. Interaction of organic-inorganic hybrid perovskite electron system with lattice system. Mater. Today. Sustain. 2024, 25, 100617.

8. Asuo, I. M.; Gedamu, D.; Ka, I.; et al. High-performance pseudo-halide perovskite nanowire networks for stable and fast-response photodetector. Nano. Energy. 2018, 51, 324-32.

9. Lian, X.; Wang, X.; Ling, Y.; et al. Light emitting diodes based on inorganic composite halide perovskites. Adv. Funct. Mater. 2019, 29, 1807345.

10. Qiu, L.; Ono, L. K.; Qi, Y. Advances and challenges to the commercialization of organic-inorganic halide perovskite solar cell technology. Mater. Today. Energy. 2018, 7, 169-89.

11. Ma, Z.; Yuan, S.; Deng, J.; et al. Small-molecule targeting of defect passivation in all-inorganic carbon-based perovskite solar cells. Solar. RRL. 2023, 7, 2201079.

12. Chen, C.; Cai, Y.; Zhang, Y.; et al. Exploring the effect of C6H5-x/FxBr (x=0-3) passivating agent on surface properties at different termination ends: first principles. Phys. Chem. Chem. Phys. 2023, 25, 29924-39.

13. Kan, C.; Hang, P.; Wang, S.; et al. Efficient and stable perovskite-silicon tandem solar cells with copper thiocyanate-embedded perovskite on textured silicon. Nat. Photon. 2025, 19, 63-70.

14. Zhou, Q.; Gao, Y.; Cai, C.; et al. Dually-passivated perovskite solar cells with reduced voltage loss and increased super oxide resistance. Angew. Chem. Int. Ed. 2021, 60, 8303-12.

15. Wei, J.; Wang, Q.; Huo, J.; et al. Mechanisms and suppression of photoinduced degradation in perovskite solar cells. Adv. Energy. Mater. 2021, 11, 2002326.

16. Oner, S. M.; Sezen, E.; Yordanli, M. S.; Karakoc, E.; Deger, C.; Yavuz, I. Surface defect formation and passivation in formamidinium lead triiodide (FAPbI3) perovskite solar cell absorbers. J. Phys. Chem. Lett. 2022, 13, 324-30.

17. Lin, C.; Li, S.; Zhang, W.; Shao, C.; Yang, Z. Effect of bromine substitution on the ion migration and optical absorption in MAPbI3 perovskite solar cells: the first-principles study. ACS. Appl. Energy. Mater. 2018, 1, 1374-80.

18. Feng, X.; Liu, B.; Peng, Y.; et al. Restricting the formation of Pb-Pb dimer via surface Pb site passivation for enhancing the light stability of perovskite. Small 2022, 18, e2201831.

19. Wang, S.; Wang, A.; Deng, X.; et al. Lewis acid/base approach for efficacious defect passivation in perovskite solar cells. J. Mater. Chem. A. 2020, 8, 12201-25.

20. Wang, Z.; Pradhan, A.; Kamarudin, M. A.; et al. Passivation of grain boundary by squaraine zwitterions for defect passivation and efficient perovskite solar cells. ACS. Appl. Mater. Interfaces. 2019, 11, 10012-20.

21. Senftle, T. P.; Lessio, M.; Carter, E. A. The role of surface-bound dihydropyridine analogues in pyridine-catalyzed CO2 reduction over semiconductor photoelectrodes. ACS. Cent. Sci. 2017, 3, 968-74.

22. Senftle, T. P.; Lessio, M.; Carter, E. A. Interaction of pyridine and water with the reconstructed surfaces of GaP(111) and CdTe(111) photoelectrodes: implications for CO2 reduction. Chem. Mater. 2016, 28, 5799-810.

23. Yuan, J.; Zheng, L.; Hao, C. Role of pyridine in photoelectrochemical reduction of CO2 to methanol at a CuInS2 thin film electrode. RSC. Adv. 2014, 4, 39435-8.

24. Jeon, J. H.; Mareeswaran, P. M.; Choi, C. H.; Woo, S. I. Synergism between CdTe semiconductor and pyridine - photoenhanced electrocatalysis for CO2 reduction to formic acid. RSC. Adv. 2014, 4, 3016-9.

25. Lim, C. H.; Holder, A. M.; Hynes, J. T.; Musgrave, C. B. Reduction of CO2 to methanol catalyzed by a biomimetic organo-hydride produced from pyridine. J. Am. Chem. Soc. 2014, 136, 16081-95.

26. Pan, Y.; Liu, X.; Zhang, W.; et al. Advances in photocatalysis based on fullerene C60 and its derivatives: properties, mechanism, synthesis, and applications. Appl. Catal. B. Environ. 2020, 265, 118579.

27. Zhang, Z.; Shu, M.; Jiang, Y.; Xu, J. Fullerene modified CsPbBr3 perovskite nanocrystals for efficient charge separation and photocatalytic CO2 reduction. Chem. Eng. J. 2021, 414, 128889.

28. Hameed, T. A.; Mohamed, F.; Abd-El-Messieh, S. L.; Ward, A. Methylammonium lead iodide/poly(methyl methacrylate) nanocomposite films for photocatalytic applications. Mater. Chem. Phys. 2023, 293, 126811.

29. Wu, Z.; Bi, E.; Ono, L. K.; et al. Passivation strategies for enhancing device performance of perovskite solar cells. Nano. Energy. 2023, 115, 108731.

30. Zhi, C.; Wang, S.; Sun, S.; et al. Machine-learning-assisted screening of interface passivation materials for perovskite solar cells. ACS. Energy. Lett. 2023, 8, 1424-33.

31. Mai, Y.; Tang, J.; Meng, H.; et al. Machine learning-based screening of two-dimensional perovskite organic spacers. Adv. Compos. Hybrid. Mater. 2024, 7, 910.

32. Wu, Z.; Kang, L.; Huang, T.; et al. Elevating perovskite efficiency via machine learning-assisted screening of passivators. Chem. Eng. J. 2024, 499, 156391.

33. Wang, D.; Thunéll, S.; Lindberg, U.; Jiang, L.; Trygg, J.; Tysklind, M. Towards better process management in wastewater treatment plants: process analytics based on SHAP values for tree-based machine learning methods. J. Environ. Manag. 2022, 301, 113941.

34. Zhang, X.; Ding, B.; Wang, Y.; et al. Machine learning for screening small molecules as passivation materials for enhanced perovskite solar cells. Adv. Funct. Mater. 2024, 34, 2314529.

35. Liu, Y.; Wang, Y.; Zhang, J. New machine learning algorithm: random forest. In: Liu, B.; Ma, M.; Chang, J. editors. Information computing and applications. Berlin: Springer; 2012. pp. 246-52.

36. Noble, W. S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565-7.

37. Kramer, O. Dimensionality reduction with unsupervised nearest neighbors. Springer; 2013. Available from: https://link.springer.com/book/10.1007/978-3-642-38652-7 [Last accessed on 6 Feb 2025]

38. Natekin, A.; Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobot. 2013, 7, 21.

39. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.

40. Tang, T.; Tang, Y. A first principle comparison of arsenic-based double halide perovskite materials for photovoltaic and optoelectronic application. J. Solid. State. Chem. 2022, 316, 123557.

41. Mwankemwa, N.; Wang, H.; Zhu, T.; Fan, Q.; Zhang, F.; Zhang, W. First principles calculations investigation of optoelectronic properties and photocatalytic CO2 reduction of (MoSi2N4)5-n/(MoSiGeN4)n in-plane heterostructures. Results. Phys. 2022, 37, 105549.

42. Cai, Y.; Chen, C.; Chen, F.; et al. Theoretical exploration of CO2 photocatalytic reduction using single atom gold nanoparticles (Au0) modified SrTi0.875Hf0.125O3. J. Catal. 2024, 432, 115410.

43. Wang, F.; Xie, W.; Yang, L.; Xie, D.; Lin, S. Revealing the importance of kinetics in N-coordinated dual-metal sites catalyzed oxygen reduction reaction. J. Catal. 2021, 396, 215-23.

44. Guo, M.; Ji, M.; Cui, W. Theoretical investigation of HER/OER/ORR catalytic activity of single atom-decorated graphyne by DFT and comparative DOS analyses. App. Surf. Sci. 2022, 592, 153237.

45. Zuo, X.; Chang, K.; Zhao, J.; et al. Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material. J. Mater. Chem. A. 2016, 4, 51-8.

46. Tripathi, A.; Thapa, R. Optimizing CO2RR selectivity on single atom catalysts using graphical construction and identification of energy descriptor. Carbon 2023, 208, 330-7.

47. Son, C.; Son, H.; Jeong, B. Enhanced conversion efficiency in MAPbI3 perovskite solar cells through parameters optimization via SCAPS-1D simulation. Appl. Sci. 2024, 14, 2390.

48. Morales-Acevedo, A.; Hernández-Como, N.; Casados-Cruz, G. Modeling solar cells: a method for improving their efficiency. Mater. Sci. Eng. B. 2012, 177, 1430-5.

49. Burgelman, M.; Verschraegen, J.; Degrave, S.; Nollet, P. Modeling thin-film PV devices. Prog. Photovoltaics. 2004, 12, 143-53.

50. Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In: noise reduction in speech processing. Berlin: Springer; 2009. pp. 1-4.

51. Novaković, J. D.; Veljović, A.; Ilić, S. S.; Papić, Ž.; Tomović, M. Evaluation of classification models in machine learning. Theory. Appl. Math. Comput. Sci. 2017, 7, 39-46. Available from: https://www.proquest.com/docview/1922445698?sourcetype=Scholarly%20Journals [Last accessed on 6 Feb 2025]

52. Zang, J.; Zhang, C.; Qiang, Y.; Liu, Q.; Fei, Y.; Yu, Z. Efficient and stable planar MAPbI3 perovskite solar cells based on a small molecule passivator. Surf. Interfaces. 2021, 25, 101213.

53. Ma, X.; Li, Z. The effect of oxygen molecule adsorption on lead iodide perovskite surface by first-principles calculation. Appl. Surf. Sci. 2018, 428, 140-7.

54. Filip, M. R.; Verdi, C.; Giustino, F. GW band structures and carrier effective masses of CH3NH3PbI3 and hypothetical perovskites of the type APbI3: A = NH4, PH4, AsH4, and SbH4. J. Phys. Chem. C. 2015, 119, 25209-19.

55. Zhao, L.; Grande-Aztatzi, R.; Foroutan-Nejad, C.; Ugalde, J. M.; Frenking, G. Aromaticity, the Hückel 4 n+2 rule and magnetic current. ChemistrySelect 2017, 2, 863-70.

56. Zhao, Z.; Lu, G. Circumventing the scaling relationship on bimetallic monolayer electrocatalysts for selective CO2 reduction. Chem. Sci. 2022, 13, 3880-7.

57. Chen, X.; Xu, Y.; Ma, X.; Zhu, Y. Large dipole moment induced efficient bismuth chromate photocatalysts for wide-spectrum driven water oxidation and complete mineralization of pollutants. Natl. Sci. Rev. 2020, 7, 652-9.

58. Wang, G.; Cheng, D.; He, T.; et al. Enhanced visible-light responsive photocatalytic activity of Bi25FeO40/Bi2Fe4O9 composites and mechanism investigation. J. Mater. Sci. Mater. Electron. 2019, 30, 10923-33.

59. Al-Shami, A.; Sibari, A.; Mansouri, Z.; et al. Photocatalytic properties of ZnO:Al/MAPbI3/Fe2O3 heterostructure: first-principles calculations. Int. J. Mol. Sci. 2023, 24, 4856.

60. Hammer, B.; Norskov, J. K. Why gold is the noblest of all the metals. Nature 1995, 376, 238-40.

61. Jacobs, R.; Hwang, J.; Shao-Horn, Y.; Morgan, D. Assessing correlations of perovskite catalytic performance with electronic structure descriptors. Chem. Mater. 2019, 31, 785-97.

62. Wang, T.; Zhang, C.; Wang, J.; et al. The interplay between the suprafacial and intrafacial mechanisms for complete methane oxidation on substituted LaCoO3 perovskite oxides. J. . Catal. 2020, 390, 1-11.

63. Xiang, D.; Magana, D.; Dyer, R. B. CO2 reduction catalyzed by mercaptopteridine on glassy carbon. J. Am. Chem. Soc. 2014, 136, 14007-10.

64. Zhou, W.; Jing, Q.; Li, J.; Chen, Y.; Hao, G.; Wang, L. Organic photocatalysts for solar water splitting: molecular- and aggregate-level modifications. Acta. Phys. Chim. Sin. 2023, 9, 2211010.

65. Li, X.; Mai, H.; Lu, J.; et al. Rational atom substitution to obtain efficient, lead-free photocatalytic perovskites assisted by machine learning and DFT calculations. Angew. Chem. Int. Ed. 2023, 62, e202315002.

66. Ashaduzzaman, M.; Kang, X.; Strange, L.; Pan, S. Electrocatalytic CO2 reduction at pyridine functionalized Au nanoparticles supported by NanoCOT electrode. J. Electrochem. Soc. 2022, 169, 116510.

67. Vasilyev, D. V.; Dyson, P. J. The role of organic promoters in the electroreduction of carbon dioxide. ACS. Catal. 2021, 11, 1392-405.

68. Yu, M.; Doak, P.; Tamblyn, I.; Neaton, J. B. Theory of covalent adsorbate frontier orbital energies on functionalized light-absorbing semiconductor surfaces. J. Phys. Chem. Lett. 2013, 4, 1701-6.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/