REFERENCES
2. Zhao, Y.; Niu, Z.; Zhao, J.; Xue, L.; Fu, X.; Long, J. Recent advancements in photoelectrochemical water splitting for hydrogen production. Electrochem. Energy. Rev. 2023, 6, 14.
3. Pomerantseva, E.; Gogotsi, Y. Two-dimensional heterostructures for energy storage. Nat. Energy. 2017, 2, 17089.
4. Ma, W.; Zhang, X.; Li, W.; et al. Advanced Pt-based electrocatalysts for the hydrogen evolution reaction in alkaline medium. Nanoscale 2023, 15, 11759-76.
5. Li, Z.; Ge, R.; Su, J.; Chen, L. Recent progress in low Pt content electrocatalysts for hydrogen evolution reaction. Adv. Mater. Inter. 2020, 7, 2000396.
6. Amano, F.; Tsushiro, K. Proton exchange membrane photoelectrochemical cell for water splitting under vapor feeding. Energy. Mater. 2024, 4, 400006.
7. Huang, L.; Zaman, S.; Tian, X.; Wang, Z.; Fang, W.; Xia, B. Y. Advanced platinum-based oxygen reduction electrocatalysts for fuel cells. Acc. Chem. Res. 2021, 54, 311-22.
8. Feng, J.; Li, J.; Zhang, H.; et al. Accelerating redox kinetics by ZIF-67 derived amorphous cobalt phosphide electrocatalyst for high-performance lithium-sulfur batteries. Energy. Mater. 2023, 3, 300001.
9. Hu, C.; Hu, Y.; Zhang, B.; et al. Advanced catalyst design strategies and in-situ characterization techniques for enhancing electrocatalytic activity and stability of oxygen evolution reaction. Electrochem. Energy. Rev. 2024, 7, 19.
10. Pu, Z.; Liu, T.; Amiinu, I. S.; et al. Transition-metal phosphides: activity origin, energy-related electrocatalysis applications, and synthetic strategies. Adv. Funct. Mater. 2020, 30, 2004009.
11. Shi, Y.; Li, M.; Yu, Y.; Zhang, B. Recent advances in nanostructured transition metal phosphides: synthesis and energy-related applications. Energy. Environ. Sci. 2020, 13, 4564-82.
12. Yu, S.; Cai, W.; Chen, L.; Song, L.; Song, Y. Recent advances of metal phosphides for Li-S chemistry. J. Energy. Chem. 2021, 55, 533-48.
13. Chen, Z.; Zeng, X.; Li, X.; Lv, Z.; Li, J.; Zhang, Y. Strong metal phosphide-phosphate support interaction for enhanced non‐noble metal catalysis. Adv. Mater. 2022, 34, 2106724.
14. Pu, Z.; Liu, T.; Zhao, W.; et al. Versatile route to fabricate precious-metal phosphide electrocatalyst for acid-stable hydrogen oxidation and evolution reactions. ACS. Appl. Mater. Interfaces. 2020, 12, 11737-44.
15. Pu, Z.; Amiinu, I. S.; Kou, Z.; Li, W.; Mu, S. RuP2-based catalysts with platinum-like activity and higher durability for the hydrogen evolution reaction at all pH values. Angew. Chem. Int. Ed. 2017, 56, 11559-64.
16. Ishikawa, H.; Yamaguchi, S.; Mizugaki, T.; Mitsudome, T. Highly active and sulfur-tolerant ruthenium phosphide catalyst for efficient reductive amination of carbonyl compounds. ACS. Catal. 2024, 14, 4501-9.
17. Huang, C.; Xu, H.; Shuai, T.; Zhan, Q.; Zhang, Z.; Li, G. A review of modulation strategies for improving catalytic performance of transition metal phosphides for oxygen evolution reaction. Appl. Catal. B. Environ. 2023, 325, 122313.
18. Wu, M.; Dong, F.; Yang, Y.; et al. Emerging atomically precise metal nanoclusters and ultrasmall nanoparticles for efficient electrochemical energy catalysis: synthesis strategies and surface/interface engineering. Electrochem. Energy. Rev. 2024, 7, 217.
19. Yue, L.; Liang, J.; Wu, Z.; et al. Progress and perspective of metal phosphide/carbon heterostructure anodes for rechargeable ion batteries. J. Mater. Chem. A. 2021, 9, 11879-907.
20. Xu, R.; Du, L.; Adekoya, D.; et al. Well-defined nanostructures for electrochemical energy conversion and storage. Adv. Energy. Mater. 2021, 11, 2001537.
21. Kibsgaard, J.; Jaramillo, T. F. Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 2014, 53, 14433-7.
22. Xing, Z.; Liu, Q.; Asiri, A. M.; Sun, X. Closely interconnected network of molybdenum phosphide nanoparticles: a highly efficient electrocatalyst for generating hydrogen from water. Adv. Mater. 2014, 26, 5702-7.
23. Li, C.; Wang, Z.; Liu, M.; et al. Ultrafast self-heating synthesis of robust heterogeneous nanocarbides for high current density hydrogen evolution reaction. Nat. Commun. 2022, 13, 3338.
24. Liu, W.; Yang, J.; Zhao, Y.; et al. Laser-ironing induced capping layer on Co-ZIF-L promoting in situ surface modification to high-spin oxide-carbon hybrids on the “real catalyst” for high OER activity and stability. Adv. Mater. 2024, 36, 2310106.
25. Cui, M.; Yang, C.; Hwang, S.; et al. Rapid atomic ordering transformation toward intermetallic nanoparticles. Nano. Lett. 2022, 22, 255-62.
26. Kim, Y. T.; Lee, J.; Lee, J. Electricity-driven reactors that promote thermochemical catalytic reactions via joule and induction heating. Chem. Eng. J. 2023, 470, 144333.
27. Lv, X.; Tian, W.; Yuan, Z. Recent advances in high-efficiency electrocatalytic water splitting systems. Electrochem. Energy. Rev. 2023, 6, 23.
28. Pu, Z.; Zhao, J.; Amiinu, I. S.; et al. A universal synthesis strategy for P-rich noble metal diphosphide-based electrocatalysts for the hydrogen evolution reaction. Energy. Environ. Sci. 2019, 12, 952-7.
29. Du, H.; Du, Z.; Wang, T.; et al. Unlocking interfacial electron transfer of ruthenium phosphides by homologous core-shell design toward efficient hydrogen evolution and oxidation. Adv. Mater. 2022, 34, 2204624.
30. Chen, D.; Pu, Z.; Lu, R.; et al. Ultralow Ru loading transition metal phosphides as high-efficient bifunctional electrocatalyst for a solar-to-hydrogen generation system. Adv. Energy. Mater. 2020, 10, 2000814.
31. Liu, T.; Wang, J.; Zhong, C.; et al. Benchmarking three ruthenium phosphide phases for electrocatalysis of the hydrogen evolution reaction: experimental and theoretical insights. Chem. Eur. J. 2019, 25, 7826-30.
32. Chang, Q.; Ma, J.; Zhu, Y.; et al. Controllable synthesis of ruthenium phosphides (RuP and RuP2) for pH-universal hydrogen evolution reaction. ACS. Sustainable. Chem. Eng. 2018, 6, 6388-94.
33. Jin, Y.; Fan, X.; Cheng, W.; Zhou, Y.; Xiao, L.; Luo, W. The role of phosphorus on alkaline hydrogen oxidation electrocatalysis for ruthenium phosphides. Angew. Chem. 2024, 136, e202406888.
34. Hong, Y.; Cho, S. C.; Kim, S.; et al. Double-walled tubular heusler-type platinum-ruthenium phosphide as all-pH hydrogen evolution reaction catalyst outperforming platinum and ruthenium. Adv. Energy. Mater. 2024, 14, 2304269.
35. Galyamin, D.; Torrero, J.; Elliott, J. D.; et al. Insights into the high activity of ruthenium phosphide for the production of hydrogen in proton exchange membrane water electrolyzers. Adv. Energy. Sustain. Res. 2023, 4, 2300059.
36. Hu, C.; Yue, K.; Han, J.; et al. Misoriented high-entropy iridium ruthenium oxide for acidic water splitting. Sci. Adv. 2023, 9, eadf9144.
37. He, W.; Tan, X.; Guo, Y.; Xiao, Y.; Cui, H.; Wang, C. Grain-boundary-rich RuO2 porous nanosheet for efficient and stable acidic water oxidation. Angew. Chem. Int. Ed. 2024, 63, e202405798.