REFERENCES
1. Xing, J.; Bliznakov, S.; Bonville, L.; Oljaca, M.; Maric, R. A review of nonaqueous electrolytes, binders, and separators for lithium-ion batteries. Electrochem. Energy. Rev. 2022, 5, 131.
2. Zheng, Y.; Chen, Z.; Zhang, J. Solid oxide electrolysis of H2O and CO2 to produce hydrogen and low-carbon fuels. Electrochem. Energy. Rev. 2021, 4, 508-17.
3. Or, T.; Gourley, S. W. D.; Kaliyappan, K.; Zheng, Y.; Li, M.; Chen, Z. Recent progress in surface coatings for sodium-ion battery electrode materials. Electrochem. Energy. Rev. 2022, 5, 137.
4. Zhang, Z.; Zhang, H.; Wu, Y.; et al. Advances in doping strategies for sodium transition metal oxides cathodes: a review. Front. Energy. 2024, 18, 141-59.
5. Shang, Z.; Li, T.; Hu, B.; et al. Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting. Front. Energy. 2024, 18, 378-89.
6. Li, Q.; Sun, X.; Cao, D.; Wang, Y.; Luan, P.; Zhu, H. Versatile electrospinning for structural designs and ionic conductor orientation in all-solid-state lithium batteries. Electrochem. Energy. Rev. 2022, 5, 170.
7. Qian, L.; Singh, B.; Yu, Z.; et al. Unlocking lithium ion conduction in lithium metal fluorides. Matter 2024, 7, 3587-607.
8. Wang, H.; Duan, S.; Zheng, Y.; et al. Solid-state electrolytes based on metal-organic frameworks for enabling high-performance lithium-metal batteries: fundamentals, progress, and perspectives. eTransportation 2024, 20, 100311.
9. Wang, C.; Fu, K.; Kammampata, S. P.; et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 2020, 120, 4257-300.
10. Feng, X.; Fang, H.; Wu, N.; et al. Review of modification strategies in emerging inorganic solid-state electrolytes for lithium, sodium, and potassium batteries. Joule 2022, 6, 543-87.
11. Janek, J.; Zeier, W. G. Challenges in speeding up solid-state battery development. Nat. Energy. 2023, 8, 230-40.
12. Yu, S.; Schmidt, R. D.; Garcia-mendez, R.; et al. Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater. 2016, 28, 197-206.
13. Xian, C.; Zhang, S.; Liu, P.; et al. An advanced gel polymer electrolyte for solid-state lithium metal batteries. Small 2024, 20, e2306381.
14. Tu, Q.; Shi, T.; Chakravarthy, S.; Ceder, G. Understanding metal propagation in solid electrolytes due to mixed ionic-electronic conduction. Matter 2021, 4, 3248-68.
15. Singh, D. K.; Fuchs, T.; Krempaszky, C.; et al. Origin of the lithium metal anode instability in solid-state batteries during discharge. Matter 2023, 6, 1463-83.
16. Wan, J.; Wan, M.; Hou, X.; et al. Combining ternary, ionic liquid-based, polymer electrolytes with a single-ion conducting polymer-based interlayer for lithium metal batteries. Energy. Mater. 2024, 4, 400074.
17. Xiao, Y.; Wang, Y.; Bo, S.; Kim, J. C.; Miara, L. J.; Ceder, G. Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 2020, 5, 105-26.
18. Zheng, Y.; Yao, Y.; Ou, J.; et al. A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem. Soc. Rev. 2020, 49, 8790-839.
19. Shi, C.; Song, J.; Zhang, Y.; et al. Revealing the mechanisms of lithium-ion transport and conduction in composite solid polymer electrolytes. Cell. Rep. Phy. Sci. 2023, 4, 101321.
20. Zhao, X.; Wang, C.; Liu, H.; Liang, Y.; Fan, L. A review of polymer-based solid-state electrolytes for lithium-metal batteries: structure, kinetic, interface stability, and application. Batteries. Supercaps. 2023, 6, e202200502.
21. Yang, L.; Nie, Y.; Liu, Y.; et al. The plasticizer-free composite block copolymer electrolytes for ultralong lifespan all-solid-state lithium-metal batteries. Nano. Energy. 2022, 100, 107499.
22. Zhou, W.; Wang, S.; Li, Y.; Xin, S.; Manthiram, A.; Goodenough, J. B. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 2016, 138, 9385-8.
23. Yang, X.; Jiang, M.; Gao, X.; et al. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal -OH group? Energy. Environ. Sci. 2020, 13, 1318-25.
24. Duan, S.; Qian, L.; Zheng, Y.; et al. Mechanisms of the accelerated Li+ conduction in MOF-based solid-state polymer electrolytes for all-solid-state lithium metal batteries. Adv. Mater. 2024, 36, e2314120.
25. Liang, J.; Hwang, S.; Li, S.; et al. Stabilizing and understanding the interface between nickel-rich cathode and PEO-based electrolyte by lithium niobium oxide coating for high-performance all-solid-state batteries. Nano. Energy. 2020, 78, 105107.
26. Wang, X.; Yushin, G. Chemical vapor deposition and atomic layer deposition for advanced lithium ion batteries and supercapacitors. Energy. Environ. Sci. 2015, 8, 1889-904.
27. Li, Z.; Su, J.; Wang, X. Atomic layer deposition in the development of supercapacitor and lithium-ion battery devices. Carbon 2021, 179, 299-326.
28. Karimzadeh, S.; Safaei, B.; Yuan, C.; Jen, T. Emerging atomic layer deposition for the development of high-performance lithium-ion batteries. Electrochem. Energy. Rev. 2023, 6, 192.
29. Jung, Y. S.; Lu, P.; Cavanagh, A. S.; et al. Unexpected improved performance of ALD coated LiCoO2/graphite Li-ion batteries. Adv. Energy. Mater. 2013, 3, 213-9.
30. Han, X.; Gong, Y.; Fu, K. K.; et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 2017, 16, 572-9.
31. Qian, L.; Zheng, Y.; Or, T.; et al. Advanced material engineering to tailor nucleation and growth towards uniform deposition for anode-less lithium metal batteries. Small 2022, 18, e2205233.
32. Li, Z.; Zheng, Y.; Liao, C.; et al. Advanced polymer materials for protecting lithium metal anodes of liquid-state and solid-state lithium batteries. Adv. Funct. Mater. 2024, 34, 2404427.
33. Qian, H.; Li, X.; Chen, Q.; et al. LiZn/Li2O induced chemical confinement enabling dendrite-free Li-metal anode. Adv. Funct. Mater. 2024, 34, 2310143.
34. Zhao, Y.; Zheng, K.; Sun, X. Addressing interfacial issues in liquid-based and solid-state batteries by atomic and molecular layer deposition. Joule 2018, 2, 2583-604.
35. Chang, C.; Hu, S.; Li, T.; et al. A robust gradient solid electrolyte interphase enables fast Zn dissolution and deposition dynamics. Energy. Environ. Sci. 2024, 17, 680-94.
36. Yang, L.; Luo, D.; Zheng, Y.; et al. Heterogeneous nanodomain electrolytes for ultra-long-life all-solid-state lithium-metal batteries. Adv. Funct. Mater. 2022, 32, 2204778.
37. Shi, J.; Nguyen, H.; Chen, Z.; et al. Nanostructured block copolymer single-ion conductors for low-temperature, high-voltage and fast charging lithium-metal batteries. Energy. Mater. 2023, 3, 300036.
38. Yang, X.; Huang, Y.; Li, J.; et al. Understanding of working mechanism of lithium difluoro(oxalato) borate in Li||NCM85 battery with enhanced cyclic stability. Energy. Mater. 2023, 3, 300029.
39. Zheng, Y.; Yang, N.; Gao, R.; et al. “Tree-trunk” design for flexible quasi-solid-state electrolytes with hierarchical ion-channels enabling ultralong-life lithium-metal batteries. Adv. Mater. 2022, 34, e2203417.
40. Qiu, C.; Odarchenko, Y.; Meng, Q.; et al. Resolving the effect of oxygen vacancies on Co nanostructures using soft XAS/X-PEEM. ACS. Catal. 2022, 12, 9125-34.
41. Oversteeg CH, Doan HQ, de Groot FM, Cuk T. In situ X-ray absorption spectroscopy of transition metal based water oxidation catalysts. Chem. Soc. Rev. 2017, 46, 102-25.
42. Maugeri, L.; Simonelli, L.; Iadecola, A.; et al. Temperature dependent local structure of LiCoO2 nanoparticles determined by Co
43. Ekwongsa, C.; Rujirawat, S.; Butnoi, P.; et al. Temperature dependent local structure of LiCoO2 determined by in-situ Co K-edge X-ray
44. Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 1998, 394, 456-8.
45. Oyakhire, S. T.; Huang, W.; Wang, H.; et al. Revealing and elucidating ALD-derived control of lithium plating microstructure. Adv. Energy. Mater. 2020, 10, 2002736.
46. Wang, S.; Sun, Q.; Zhang, Q.; et al. Li-ion transfer mechanism of ambient-temperature solid polymer electrolyte toward lithium metal battery. Adv. Energy. Mater. 2023, 13, 2204036.
47. Mirsakiyeva, A.; Ebadi, M.; Araujo, C. M.; Brandell, D.; Broqvist, P.; Kullgren, J. Initial steps in PEO decomposition on a Li metal electrode. J. Phys. Chem. C. 2019, 123, 22851-7.
48. Lin, C.; Kozen, A. C.; Noked, M.; Liu, C.; Rubloff, G. W. ALD protection of Li-metal anode surfaces - quantifying and preventing chemical and electrochemical corrosion in organic solvent. Adv. Mater. Inter. 2016, 3, 1600426.
49. Li, B.; Su, Q.; Liu, C.; et al. Stable interface of a high-energy solid-state lithium metal battery via a sandwich composite polymer electrolyte. J. Power. Sources. 2021, 496, 229835.
50. Song, X.; Zhang, T.; Fan, R.; et al. A composite solid-state electrolyte of high ionic-conductivity garnet-type Li6.5La3Zr1.5Ta0.1Nb0.4O12 filler in PEO matrix. Solid. State. Ion. 2023, 403, 116410.
51. Liu, M.; Guan, X.; Liu, H.; et al. Composite solid electrolytes containing single-ion lithium polymer grafted garnet for dendrite-free, long-life all-solid-state lithium metal batteries. Chem. Eng. J. 2022, 445, 136436.
52. Yu, G.; Pan, L.; Zhang, H.; et al. Thin yet strong composite polymer electrolyte reinforced by nanofibrous membrane for flexible dendrite-free solid-state lithium metal batteries. Adv. Energy. Sustain. Res. 2022, 3, 2100193.
53. Moškon, J.; Gaberšček, M. Transmission line models for evaluation of impedance response of insertion battery electrodes and cells. J. Power. Sources. Adv. 2021, 7, 100047.
54. Ye, W.; Fan, Z.; Zhou, X.; Xue, Z. Functionalized polypropylene separator coated with polyether/polyester blend for high-performance lithium metal batteries. Energy. Mater. 2024, 4, 400049.
55. Groot FM, Grioni M, Fuggle JC, Ghijsen J, Sawatzky GA, Petersen H. Oxygen 1s X-ray-absorption edges of transition-metal oxides. Phys. Rev. B. Condens. Matter. 1989, 40, 5715-23.
57. Li, F.; Li, Y.; Chen, H.; et al. Impact of strain-induced changes in defect chemistry on catalytic activity of Nd2NiO4+δ electrodes. ACS. Appl. Mater. Interfaces. 2018, 10, 36926-32.
58. Huang, R.; Ding, Y.; Zhang, F.; et al. The interphasial degradation of 4.2 V-class poly(ethylene oxide)-based solid batteries beyond electrochemical voltage limit. J. Energy. Chem. 2022, 75, 504-11.
59. Kim, D. S.; Kim, Y. E.; Kim, H. Improved fast charging capability of graphite anodes via amorphous Al2O3 coating for high power lithium ion batteries. J. Power. Sources. 2019, 422, 18-24.
60. Zhang, H.; Xu, Z.; Shi, B.; et al. Enhanced cyclability of Cr8O21 cathode for PEO-based all-solid-state lithium-ion batteries by atomic layer deposition of Al2O3. Materials 2021, 14, 5380.