1. Moutet, J.; El-Assaad, T. H.; Kaur, R.; Mills, D. D.; Gianetti, T. L. Designing the next generation of symmetrical organic redox flow batteries using helical carbocations. Energy. Mater. 2024, 4, 400024.
2. Zhang, J.; Lejarazu-Larrañaga, A.; Yang, F.; et al. Tailoring porous structure in non-ionic polymer membranes using multiple templates for low-cost iron-lead single-flow batteries. Energy. Mater. 2024, 4, 400042.
3. Fan, H.; Liu, K.; Zhang, X.; et al. Spatial structure regulation towards armor-clad five-membered pyrroline nitroxides catholyte for long-life aqueous organic redox flow batteries. eScience 2024, 4, 100202.
4. Zuo, L. L.; Ma, Q.; Li, S. C.; et al. Highly thermal conductive separator with in-built phosphorus stabilizer for superior Ni-rich cathode based lithium metal batteries. Adv. Energy. Mater. 2021, 11, 2003285.
5. Li, H.; Fan, H.; Hu, B.; Hu, L.; Chang, G.; Song, J. Spatial structure regulation: a rod-shaped viologen enables long lifetime in aqueous redox flow batteries. Angew. Chem. Int. Ed. 2021, 60, 26971-7.
6. Fan, H.; Wu, W.; Ravivarma, M.; et al. Mitigating ring-opening to develop stable TEMPO catholytes for pH-neutral all-organic redox flow batteries. Adv. Funct. Mater. 2022, 32, 2203032.
7. Duan, Y.; Li, B.; Yang, K.; et al. Ultrahigh energy and power density in Ni-Zn aqueous battery via superoxide-activated three-electron transfer. Nanomicro. Lett. 2024, 17, 79.
8. Li, Z.; Lu, Y. C. Material design of aqueous redox flow batteries: fundamental challenges and mitigation strategies. Adv. Mater. 2020, 32, e2002132.
9. Zhao, C. X.; Liu, J. N.; Li, B. Q.; et al. Multiscale construction of bifunctional electrocatalysts for long-lifespan rechargeable zinc-air batteries. Adv. Funct. Mater. 2020, 30, 2003619.
10. Huang, Y.; Li, L.; Xiong, L.; et al. Electrodes with metal-based electrocatalysts for redox flow batteries in a wide pH range. Prog. Energy. 2023, 5, 022002.
11. Amini, K.; Gostick, J.; Pritzker, M. D. Metal and metal oxide electrocatalysts for redox flow batteries. Adv. Funct. Mater. 2020, 30, 1910564.
12. Li, Z.; Weng, G.; Zou, Q.; Cong, G.; Lu, Y. C. A high-energy and low-cost polysulfide/iodide redox flow battery. Nano. Energy. 2016, 30, 283-92.
13. Ma, D.; Hu, B.; Wu, W.; et al. Highly active nanostructured CoS2/CoS heterojunction electrocatalysts for aqueous polysulfide/iodide redox flow batteries. Nat. Commun. 2019, 10, 3367.
14. Xia, Y.; Ouyang, M.; Yufit, V.; et al. A cost-effective alkaline polysulfide-air redox flow battery enabled by a dual-membrane cell architecture. Nat. Commun. 2022, 13, 2388.
15. Ai, F.; Wang, Z.; Lai, N. C.; Zou, Q.; Liang, Z.; Lu, Y. C. Heteropoly acid negolytes for high-power-density aqueous redox flow batteries at low temperatures. Nat. Energy. 2022, 7, 417-26.
16. Amini, K.; Kerr, E. F.; George, T. Y.; et al. An extremely stable, highly soluble monosubstituted anthraquinone for aqueous redox flow batteries. Adv. Funct. Mater. 2023, 33, 2211338.
17. Carrington, M. E.; Sokołowski, K.; Jónsson, E.; et al. Associative pyridinium electrolytes for air-tolerant redox flow batteries. Nature 2023, 623, 949-55.
18. Feng, R.; Chen, Y.; Zhang, X.; et al. Proton-regulated alcohol oxidation for high-capacity ketone-based flow battery anolyte. Joule 2023, 7, 1609-22.
19. Hu, M.; Wu, W.; Luo, J.; Liu, T. L. Desymmetrization of viologen anolytes empowering energy dense, ultra stable flow batteries toward long-duration energy storage. Adv. Energy. Mater. 2022, 12, 2202085.
20. Jing, Y.; Zhao, E. W.; Goulet, M. A.; et al. In situ electrochemical recomposition of decomposed redox-active species in aqueous organic flow batteries. Nat. Chem. 2022, 14, 1103-9.
21. Na, M.; Singh, V.; Choi, R. H.; Kim, B. G.; Byon, H. R. Zn glutarate protective layers in situ form on Zn anodes for Zn redox flow batteries. Energy. Storage. Mater. 2023, 57, 195-204.
22. Park, M.; Beh, E. S.; Fell, E. M.; et al. A high voltage aqueous zinc-organic hybrid flow battery. Adv. Energy. Mater. 2019, 9, 1900694.
23. Xiang, W.; Yang, M.; Ding, M.; et al. Alkaline Zn-Mn aqueous flow batteries with ultrahigh voltage and energy density. Energy. Storage. Mater. 2023, 61, 102894.
24. Yuan, Z.; Li, X. Perspective of alkaline zinc-based flow batteries. Sci. China. Chem. 2024, 67, 260-75.
25. Zhu, Y.; Liang, G.; Cui, X.; et al. Engineering hosts for Zn anodes in aqueous Zn-ion batteries. Energy. Environ. Sci. 2024, 17, 369-85.
26. Dong, N.; Zhang, F.; Pan, H. Towards the practical application of Zn metal anodes for mild aqueous rechargeable Zn batteries. Chem. Sci. 2022, 13, 8243-52.
27. Yu, H.; Chen, D.; Ni, X.; et al. Reversible adsorption with oriented arrangement of a zwitterionic additive stabilizes electrodes for ultralong-life Zn-ion batteries. Energy. Environ. Sci. 2023, 16, 2684-95.
28. Zhou, S.; Meng, X.; Chen, Y.; et al. Zinc-ion anchor induced highly reversible Zn anodes for high performance Zn-ion batteries. Angew. Chem. Int. Ed. 2024, 63, e202403050.
29. Xu, D.; Ren, X.; Li, H.; et al. Chelating additive regulating Zn-ion solvation chemistry for highly efficient aqueous zinc-metal battery. Angew. Chem. Int. Ed. 2024, 63, e202402833.
30. Qin, R.; Wang, Y.; Yao, L.; et al. Progress in interface structure and modification of zinc anode for aqueous batteries. Nano. Energy. 2022, 98, 107333.
31. Yuan, L.; Hao, J.; Kao, C. C.; et al. Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy. Environ. Sci. 2021, 14, 5669-89.
32. Zhao, Q.; Stalin, S.; Archer, L. A. Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 2021, 5, 1119-42.
33. Zhao, Z.; Wang, R.; Peng, C.; et al. Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat. Commun. 2021, 12, 6606.
34. Dai, Y.; Lu, R.; Zhang, C.; et al. Zn2+-mediated catalysis for fast-charging aqueous Zn-ion batteries. Nat. Catal. 2024, 7, 776-84.
35. Han, D.; Wang, Z.; Lu, H.; et al. A self-regulated interface toward highly reversible aqueous zinc batteries. Adv. Energy. Mater. 2022, 12, 2102982.
36. Bayaguud, A.; Luo, X.; Fu, Y.; Zhu, C. Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS. Energy. Lett. 2020, 5, 3012-20.
37. Zhang, Q.; Ma, Y.; Lu, Y.; et al. Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 2020, 11, 4463.
38. Geng, L.; Meng, J.; Wang, X.; et al. Organic-solvent-free primary solvation shell for low-temperature aqueous zinc batteries. Chem 2025, 11, 102302.
39. Gamsey, S.; Miller, A.; Olmstead, M. M.; et al. Boronic acid-based bipyridinium salts as tunable receptors for monosaccharides and α-hydroxycarboxylates. J. Am. Chem. Soc. 2007, 129, 1278-86.
40. Xie, F.; Li, H.; Wang, X.; et al. Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries. Adv. Energy. Mater. 2021, 11, 2003419.
41. Kumari, N.; Chhabra, T.; Kumar, S.; Krishnan, V. Nanoarchitectonics of sulfonated biochar from pine needles as catalyst for conversion of biomass derived chemicals to value added products. Catal. Commun. 2022, 168, 106467.
42. Cao, F.; Wang, T.; Ji, X. Enhanced visible photocatalytic activity of tree-like ZnO/CuO nanostructure on Cu foam. Appl. Surf. Sci. 2019, 471, 417-24.
43. Zhang, J.; Jiang, G.; Xu, P.; et al. An all-aqueous redox flow battery with unprecedented energy density. Energy. Environ. Sci. 2018, 11, 2010-5.
44. Weng, G. M.; Li, Z.; Cong, G.; Zhou, Y.; Lu, Y. C. Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and lithium/polyiodide redox flow batteries. Energy. Environ. Sci. 2017, 10, 735-41.
45. Xie, C.; Li, T.; Deng, C.; Song, Y.; Zhang, H.; Li, X. A highly reversible neutral zinc/manganese battery for stationary energy storage. Energy. Environ. Sci. 2020, 13, 135-43.
46. Jin, S.; Shao, Y.; Gao, X.; et al. Designing interphases for practical aqueous zinc flow batteries with high power density and high areal capacity. Sci. Adv. 2022, 8, eabq4456.
47. Luo, J.; Hu, B.; Hu, M.; Wu, W.; Liu, T. L. An energy-dense, powerful, robust bipolar zinc-ferrocene redox-flow battery. Angew. Chem. Int. Ed. 2022, 61, e202204030.
48. Yang, M.; Xu, Z.; Xiang, W.; et al. High performance and long cycle life neutral zinc-iron flow batteries enabled by zinc-bromide complexation. Energy. Storage. Mater. 2022, 44, 433-40.
49. Ling, R.; Zhu, Z.; Peng, K.; et al. Dual-function electrolyte additive design for long life alkaline zinc flow batteries. Adv. Mater. 2024, 36, e2404834.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.